Clinical Trials Logo

Refractory Non-Hodgkin Lymphoma clinical trials

View clinical trials related to Refractory Non-Hodgkin Lymphoma.

Filter by:

NCT ID: NCT01381692 Completed - Clinical trials for Recurrent Mantle Cell Lymphoma

Bortezomib, Rituximab, and Dexamethasone With or Without Temsirolimus in Treating Patients With Untreated or Relapsed Waldenstrom Macroglobulinemia or Relapsed or Refractory Mantle Cell or Follicular Lymphoma

Start date: July 20, 2011
Phase: Phase 1/Phase 2
Study type: Interventional

This randomized phase I/II trial studies the side effects and the best dose of temsirolimus when given together with bortezomib, rituximab, and dexamethasone and to see how well they work compared to bortezomib, rituximab, and dexamethasone alone in treating patients with untreated or relapsed Waldenstrom macroglobulinemia or relapsed or refractory mantle cell or follicular lymphoma. Bortezomib and temsirolimus may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Bortezomib may also stop the growth of cancer cells by blocking blood flow to the tumor. Monoclonal antibodies, such as rituximab, can block cancer growth in difference ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Drugs used in chemotherapy, such as dexamethasone, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. It is not yet known whether bortezomib, rituximab, and dexamethasone are more effective with temsirolimus in treating non-Hodgkin lymphoma.

NCT ID: NCT01008462 Completed - Clinical trials for Recurrent Small Lymphocytic Lymphoma

Autologous Peripheral Blood Stem Cell Transplant Followed by Donor Bone Marrow Transplant in Treating Patients With High-Risk Hodgkin Lymphoma, Non-Hodgkin Lymphoma, Multiple Myeloma, or Chronic Lymphocytic Leukemia

Start date: March 18, 2010
Phase: Phase 2
Study type: Interventional

This phase II trial studies autologous peripheral blood stem cell transplant followed by donor bone marrow transplant in treating patients with high-risk Hodgkin lymphoma, non-Hodgkin lymphoma, multiple myeloma, or chronic lymphocytic leukemia. Autologous stem cell transplantation uses the patient's stem cells and does not cause graft versus host disease (GVHD) and has a very low risk of death, while minimizing the number of cancer cells. Peripheral blood stem cell (PBSC) transplant uses stem cells from the patient or a donor and may be able to replace immune cells that were destroyed by chemotherapy. These donated stem cells may help destroy cancer cells. Bone marrow transplant known as a nonmyeloablative transplant uses stem cells from a haploidentical family donor. Autologous peripheral blood stem cell transplant followed by donor bone marrow transplant may work better in treating patients with high-risk Hodgkin lymphoma, non-Hodgkin lymphoma, multiple myeloma, or chronic lymphocytic leukemia.

NCT ID: NCT00521560 Completed - Clinical trials for Primary Non-Hodgkin-Lymphoma

A Study of Zevalin and Simultaneous Application of BEAM High-dose Chemotherapy Followed by Autologous Stem Cell Transplantation in Refractory and Relapsed Aggressive Non-Hodgkin Lymphomas

escZ-BEAM
Start date: March 2006
Phase: Phase 2
Study type: Interventional

Phase II Study Concomitant High-Dose Radio-Immuno- and Chemotherapy with simultaneous application of Zevalin and BEAM followed by autologous peripheral stem cell transplantation in relapsed and refractory CD 20+ Non-Hodgkin's lymphoma

NCT ID: NCT00005803 Completed - Clinical trials for Recurrent Small Lymphocytic Lymphoma

Autologous Stem Cell Transplant Followed by Donor Stem Cell Transplant in Treating Patients With Relapsed or Refractory Lymphoma

Start date: September 1999
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies how well autologous stem cell transplant followed by donor stem cell transplant works in treating patients with lymphoma that has returned or does not respond to treatment. Peripheral blood stem cell transplant using stem cells from the patient or a donor may be able to replace immune cells that were destroyed by chemotherapy used to kill cancer cells. The donated stem cells may also help destroy any remaining cancer cells (graft-versus-tumor effect).