View clinical trials related to Refractory Non-Hodgkin Lymphoma.
Filter by:Most participants with a relapsed or refractory non-Hodgkin's lymphoma that receive an autologous transplant are likely to suffer a relapse because standard myeloablative preparative regimens are unable to produce a cure. The majority of these participants do not have a stem cell donor available, are too frail to undergo an allogeneic transplant, or refuse an allograft. Historically these participants with high risk non-Hodgkin's lymphoma have had a very poor outcome. To take advantage of the low transplant related mortality associated with an autologous transplantation, the investigators propose modifying the preparative regimen to make it more effective without increasing toxicity. By increasing the dose of radiation while administering the protective growth factor palifermin (Kepivance), the investigators hope to decrease the risk of relapse without increasing transplant related mortality. Three prospective randomized trials have studied different radiation schemes as a part of the TBI and cytoxan preparative regimen prior to allogeneic transplantation for patients with AML or CML. As a group these trials showed that higher doses of TBI in these older studies decreased the risk of relapse at the expense of VOD, GVHD, and CMV. Three retrospective studies have also postulated that higher dose radiation led to less risk of relapse.
This pilot phase I/II trial studies the side effects and how well sirolimus and mycophenolate mofetil work in preventing graft versus host disease (GvHD) in patients with hematologic malignancies undergoing hematopoietic stem cell transplant (HSCT). Biological therapies, such as sirolimus and mycophenolate mofetil, use substances made from living organisms that may stimulate or suppress the immune system in different ways and stop tumor cells from growing. Giving sirolimus and mycophenolate mofetil after hematopoietic stem cell transplant may be better in preventing graft-versus-host disease.
This phase I trial studies the side effects and best dose of lenalidomide and blinatumomab when given together in treating patients with non-Hodgkin lymphoma that has returned after a period of improvement (relapsed). Biological therapies, such as lenalidomide, use substances made from living organisms that may stimulate or suppress the immune system in different ways and stop cancer cells from growing. Blinatumomab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread.
This phase I/II trial studies the side effects and the best dose of v-akt murine thymoma viral oncogene homolog (Akt)/mitogen-activated protein kinase 1(ERK) inhibitor ONC201 and to see how well it works in treating patients with non-Hodgkin's lymphoma that has returned after a period of improvement or does not respond to treatment. Akt/ERK inhibitor ONC201 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase I/II trial studies the side effects and best dose of nivolumab when given with or without ipilimumab to see how well they work in treating younger patients with solid tumors or sarcomas that have come back (recurrent) or do not respond to treatment (refractory). Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. It is not yet known whether nivolumab works better alone or with ipilimumab in treating patients with recurrent or refractory solid tumors or sarcomas.
This clinical trial studies intra-osseous donor umbilical cord blood and mesenchymal stromal cell co-transplant in treating patients with hematologic malignancies. Giving low doses of chemotherapy and total-body irradiation before a co-transplant of donor umbilical cord blood and mesenchymal stromal cells into the bone (intra-osseous) helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil at the time of transplant may stop this from happening.
This phase I/II trial studies the side effects and best dose of laboratory treated T cells to see how well they work in treating patients with chronic lymphocytic leukemia, non-Hodgkin lymphoma, or acute lymphoblastic leukemia that have come back or have not responded to treatment. T cells that are treated in the laboratory before being given back to the patient may make the body build an immune response to kill cancer cells.
This phase II trial studies how well ibritumomab tiuxetan before donor peripheral blood stem cell transplant works in treating patients with relapsed or refractory non-Hodgkin lymphoma. Giving rituximab, antithymocyte globulin, and total-lymphoid irradiation (TLI) before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells and helps stop the patient's immune system from rejecting the donor's stem cells. Also, radiolabeled monoclonal antibodies, such as ibritumomab tiuxetan, can find cancer cells and carry cancer-killing substances to them without harming normal cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving rituximab, antithymocyte globulin, and TLI before the transplant together with cyclosporine and mycophenolate mofetil after the transplant may stop this from happening. Giving a radiolabeled monoclonal antibody before a donor peripheral blood stem cell transplant may be an effective treatment for non-Hodgkin lymphoma.
This phase II pilot trial studies how well brentuximab vedotin with or without nivolumab works in treating patients with CD30+ lymphoma that has come back after a period of improvement or does not respond to treatment. Biological therapies, such as brentuximab vedotin, may stimulate the immune system in different ways and stop cancer cells from growing. Monoclonal antibodies, such as nivolumab may interfere with the ability of tumor cells to grow and spread. Giving brentuximab vedotin with or without nivolumab may work better in treating patients with CD30+ lymphoma.
This phase I trial studies the side effects and best way to give natural killer cells and donor umbilical cord blood transplant in treating patients with hematological malignancies. Giving chemotherapy with or without total body irradiation before a donor umbilical cord blood transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells and natural killer cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets.