View clinical trials related to Refractory Lymphoma.
Filter by:This phase II MATCH treatment trial identifies the effects of AZD5363 in patients whose cancer has a genetic change called AKT mutation. AZD5363 may block AKT, which is a protein needed for cancer cell growth. Researchers hope to learn if AZD5363 will shrink this type of cancer or stop its growth.
This phase II MATCH treatment trial identifies the effects of ado-trastuzumab emtansine in patients whose cancer has a genetic change called HER2 amplification. Ado-trastuzumab emtansine is a monoclonal antibody, called trastuzumab, linked to a chemotherapy drug called DM1. Trastuzumab is a form of "targeted therapy", because it works by attaching itself to specific molecules (receptors) on the surface of cancer cells, known as HER2 receptors and delivers DM1 to kill them. Researchers hope to learn if the study drug will shrink this type of cancer or stop its growth.
This phase II pediatric MATCH treatment trial studies how well selpercatinib works in treating patients with solid tumors that may have spread from where they first started to nearby tissue, lymph nodes, or distant parts of the body (advanced), lymphomas, or histiocytic disorders that have activating RET gene alterations. Selpercatinib may block the growth of cancer cells that have specific genetic changes in an important signaling pathway (called the RET pathway) and may reduce tumor size.
This phase I trial studies the side effects and best dose of pevonedistat when given together with irinotecan hydrochloride and temozolomide in treating patients with solid tumors, central nervous system (CNS) tumors, or lymphoma that have come back after a period of improvement (recurrent) or that do not respond to treatment (refractory). Pevonedistat and irinotecan may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving pevonedistat, irinotecan hydrochloride, and temozolomide may work better in treating patients with solid tumors, central nervous system (CNS) tumors, or lymphoma compared to irinotecan and temozolomide alone.
This phase II MATCH screening and multi-sub-trial studies how well treatment that is directed by genetic testing works in patients with solid tumors, lymphomas, or multiple myelomas that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) and does not respond to treatment (refractory). Patients must have progressed following at least one line of standard treatment or for which no agreed upon treatment approach exists. Genetic tests look at the unique genetic material (genes) of patients' tumor cells. Patients with genetic abnormalities (such as mutations, amplifications, or translocations) may benefit more from treatment which targets their tumor's particular genetic abnormality. Identifying these genetic abnormalities first may help doctors plan better treatment for patients with solid tumors, lymphomas, or multiple myeloma.
This phase I trial studies the side effects and best dose of selinexor in treating younger patients with solid tumors or central nervous system (CNS) tumors that have come back (recurrent) or do not respond to treatment (refractory). Drugs used in chemotherapy, such as selinexor, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.