View clinical trials related to Recurrent Pancreatic Carcinoma.
Filter by:This phase II trial studies the side effects and how well the combination of binimetinib and encorafenib work in treating patients with pancreatic cancer with a somatic BRAF V600E mutation. Binimetinib and encorafenib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving binimetinib and encorafenib may work better compared to the usual treatment in treating patients with pancreatic cancer and a somatic BRAF V600E mutation.
This phase Ib trial studies the side effects and best dose of guadecitabine and how well it works when given together with durvalumab in treating patients with liver, pancreatic, bile duct, or gallbladder cancer that has spread to other places in the body. Guadecitabine may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as durvalumab, may block tumor growth in different ways by targeting certain cells. Giving guadecitabine and durvalumab may work better in treating patients with liver, pancreatic, bile duct, or gallbladder cancer.
This phase Ib trial studies the side effects and best dose of Hsp90 inhibitor XL888 when given together with pembrolizumab in treating patients with advanced gastrointestinal cancer that has spread to other places in the body. XL888 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as pembrolizumab, may block tumor growth in different ways by targeting certain cells. Giving XL888 with pembrolizumab may work better in treating patients with gastrointestinal cancer.
This phase I trial studies the side effects and best dose of APN401 in treating patients with pancreatic cancer, colorectal cancer, or other solid tumors that have spread to other places in the body or have come back. APN401 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This randomized phase II trial studies how well hypofractionated stereotactic body radiation therapy and fluorouracil or capecitabine with or without zoledronic acid work in treating patients with pancreatic cancer that has spread from where it started to nearby tissue or lymph nodes. Hypofractionated stereotactic body radiation therapy is a specialized radiation therapy that sends higher doses of x-rays over a shorter period of time directly to the tumor using smaller doses over several days and may cause less damage to normal tissue. Drugs used in chemotherapy, such as fluorouracil and capecitabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Zoledronic acid is used in cancer patients to reduce cancer symptoms and may make tumor cells more sensitive to radiation. Giving hypofractionated stereotactic body radiation therapy and fluorouracil or capecitabine with or without zoledronic acid may work better in treating patients with pancreatic cancer.
This pilot clinical trial studies the side effects of ascorbic acid and combination chemotherapy in treating patients with pancreatic cancer that has spread to other places in the body, has come back, or cannot be removed by surgery. Nutrients found in food and dietary supplements, such as ascorbic acid, may improve the tolerability of chemotherapy regimens. Drugs used in chemotherapy, such as fluorouracil, irinotecan hydrochloride, and oxaliplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving ascorbic acid and combination chemotherapy may work better in treating patients with pancreatic cancer.
This randomized phase II trial studies how well modified irinotecan hydrochloride, leucovorin calcium, fluorouracil (FOLFIRI) and veliparib as a second line of therapy work compared to FOLFIRI in treating patients with pancreatic cancer that has come back after a period of improvement (metastatic). Drugs used in chemotherapy, such as irinotecan hydrochloride, leucovorin calcium, and fluorouracil, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Veliparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. It is not yet known whether modified FOLFIRI and veliparib as second line therapy is more effective than FOLFIRI alone in treating metastatic pancreatic cancer.
This phase Ib trial studies the best way of TLR8 Agonist VTX-2337 and cyclophosphamide in treating patients with a solid tumor that has spread from the primary site (place where it started) to other places in the body (metastatic), progressed for a long time (persistent), come back (recurrent), or is growing, spreading, or getting worse (progressed). TLR8 Agonist VTX-2337 may stimulate the immune system in different ways and stop tumor cells from growing. Drugs used in chemotherapy, such as cyclophosphamide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving TLR8 Agonist VTX-2337 together with cyclophosphamide may be a better treatment for solid tumors.
This phase Ib/II trial studies the side effects and best dose of bispecific antibody armed activated T-cells when given together with aldesleukin and sargramostim and to see how well they work in treating patients with pancreatic cancer that has spread from where it started to nearby tissue or lymph nodes (locally advanced) or other places in the body (metastatic). Bispecific antibody armed activated T-cells are the patient's own T cells that are coated with a bispecific antibody comprising 2 antibodies chemically joined together. These antibodies have specific targets and binding properties that may give the T cells a greater ability to seek out, attach to, and kill more cancer cells.
This phase II MATCH screening and multi-sub-trial studies how well treatment that is directed by genetic testing works in patients with solid tumors, lymphomas, or multiple myelomas that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) and does not respond to treatment (refractory). Patients must have progressed following at least one line of standard treatment or for which no agreed upon treatment approach exists. Genetic tests look at the unique genetic material (genes) of patients' tumor cells. Patients with genetic abnormalities (such as mutations, amplifications, or translocations) may benefit more from treatment which targets their tumor's particular genetic abnormality. Identifying these genetic abnormalities first may help doctors plan better treatment for patients with solid tumors, lymphomas, or multiple myeloma.