View clinical trials related to Recurrent Mantle Cell Lymphoma.
Filter by:This phase II trial studies how well tacrolimus and mycophenolate mofetil works in preventing graft-versus-host disease in patients who have undergone total-body irradiation (TBI) with or without fludarabine phosphate followed by donor peripheral blood stem cell transplant for hematologic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate, and TBI before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune system and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving tacrolimus and mycophenolate mofetil after the transplant may stop this from happening.
This phase I/II trial is studying the side effects and best dose of oblimersen when given together with rituximab and combination chemotherapy and to see how well they work in treating patients with relapsed or refractory aggressive non-Hodgkin's lymphoma. Monoclonal antibodies such as rituximab can locate cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells. Drugs used in chemotherapy, such as ifosfamide, carboplatin, and etoposide, work in different ways to stop cancer cells from dividing so they stop growing or die. Oblimersen may increase the effectiveness of chemotherapy by making cancer cells more sensitive to the drugs
This phase II trial studies how well tipifarnib works in treating patients with relapsed or refractory non-Hodgkin's lymphoma. Tipifarnib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Tipifarnib may be an effective treatment for non-Hodgkin's lymphoma.
Bortezomib may stop the growth of cancer cells by blocking the enzymes necessary for their growth. Drugs used in chemotherapy, such as flavopiridol, work in different ways to stop cancer cells from dividing so they stop growing or die. Bortezomib may increase the effectiveness of flavopiridol by making cancer cells more sensitive to the drug. Giving bortezomib together with flavopiridol may kill more cancer cells. This phase I trial is studying the side effects and best dose of bortezomib and flavopiridol in treating patients with recurrent or refractory indolent B-cell neoplasms.
This phase I/II trial studies whether stopping cyclosporine before mycophenolate mofetil is better at reducing the risk of life-threatening graft-versus-host disease (GVHD) than the previous approach where mycophenolate mofetil was stopped before cyclosporine. The other reason this study is being done because at the present time there are no curative therapies known outside of stem cell transplantation for these types of cancer. Because of age or underlying health status, patients may have a higher likelihood of experiencing harm from a conventional blood stem cell transplant. This study tests whether this new blood stem cell transplant method can be made safer by changing the order and length of time that immune suppressing drugs are given after transplant.
This phase I trial is studying the side effects and best dose of EMD 121974 in treating patients with solid tumors or lymphoma. Cilengitide (EMD 121974) may stop the growth of cancer cells by stopping blood flow to the cancer
This phase II trial is studying how well giving iodine I 131 tositumomab together with etoposide and cyclophosphamide followed by autologous stem cell transplant works in treating patients with relapsed or refractory non-Hodgkin's lymphoma. Radiolabeled monoclonal antibodies, such as iodine I 131 tositumomab, can find cancer cells and deliver radioactive cancer-killing substances to them without harming normal cells. Drugs used in chemotherapy, such as etoposide and cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Combining a radiolabeled monoclonal antibody with combination chemotherapy before autologous stem cell transplant may kill more cancer cells
This pilot phase II trial studies the side effects and how well giving gemcitabine hydrochloride, carboplatin, dexamethasone, and rituximab together works in treating patients with previously treated lymphoid malignancies. Drugs used in chemotherapy, such as gemcitabine hydrochloride, carboplatin, and dexamethasone, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Giving more than one drug (combination chemotherapy) and giving monoclonal antibody therapy with chemotherapy may kill more cancer cells
This phase I trial is studying the side effects and best dose of bortezomib when given together with fludarabine with or without rituximab in treating patients with relapsed or refractory indolent non-Hodgkin's lymphoma or chronic lymphocytic leukemia. Bortezomib may stop the growth of cancer cells by blocking the enzymes necessary for cancer cell growth. Drugs used in chemotherapy, such as fludarabine, work in different ways to stop cancer cells from dividing so they stop growing or die. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Giving bortezomib together with fludarabine with or without rituximab may kill more cancer cells.
This phase I trial is studying how well ipilimumab works after allogeneic stem cell transplant in treating patients with persistent or progressive cancer. Monoclonal antibodies can locate cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells.