Clinical Trials Logo

Recurrent Mantle Cell Lymphoma clinical trials

View clinical trials related to Recurrent Mantle Cell Lymphoma.

Filter by:
  • Active, not recruiting  
  • « Prev · Page 3

NCT ID: NCT01695941 Active, not recruiting - Clinical trials for Recurrent Mantle Cell Lymphoma

Alisertib, Bortezomib, and Rituximab in Treating Patients With Relapsed or Refractory Mantle Cell Lymphoma or B-cell Low Grade Non-Hodgkin Lymphoma

Start date: August 31, 2012
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of alisertib and bortezomib when given together with rituximab in treating patients with mantle cell lymphoma or B-cell low grade non-Hodgkin lymphoma that has returned after a period of improvement (relapsed) or does not respond to treatment (refractory). Alisertib and bortezomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as rituximab, may interfere with the ability of cancer cells to grow and spread. Giving alisertib and bortezomib together with rituximab may be a better treatment for relapsed or refractory mantle cell lymphoma or B-cell low grade non-Hodgkin lymphoma.

NCT ID: NCT01479842 Active, not recruiting - Clinical trials for Recurrent Mantle Cell Lymphoma

Rituxan/Bendamustine/PCI-32765 in Relapsed DLBCL, MCL, or Indolent Non-Hodgkin's Lymphoma

Start date: December 7, 2011
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of BTK inhibitor PCI-32765 when given together with rituximab and bendamustine hydrochloride in treating patients with recurrent non-Hodgkin lymphoma (NHL). BTK inhibitor PCI-32765 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Drugs used in chemotherapy, such as bendamustine hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving BTK inhibitor PCI-32765 together with rituximab and bendamustine hydrochloride may kill more cancer cells.

NCT ID: NCT01318317 Active, not recruiting - Clinical trials for Recurrent Mantle Cell Lymphoma

Genetically Engineered Lymphocyte Therapy After Peripheral Blood Stem Cell Transplant in Treating Patients With High-Risk, Intermediate-Grade, B-cell Non-Hodgkin Lymphoma

Start date: September 19, 2011
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies the side effects and best dose of genetically engineered lymphocyte therapy and to see how well it works after peripheral blood stem cell transplant (PBSCT) in treating patients with high-risk, intermediate-grade, B-cell non-Hodgkin lymphoma (NHL). Genetically engineered lymphocyte therapy may stimulate the immune system in different ways and stop cancer cells from growing. Giving rituximab together with chemotherapy before a PBSCT stops the growth of cancer cells by stopping them from dividing or killing them. Giving colony-stimulating factors, such as filgrastim (G-CSF), or plerixafor helps stem cells move from the bone marrow to the blood so they can be collected and stored. More chemotherapy or radiation therapy is given to prepare the bone marrow for the stem cell transplant. The stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy. Giving genetically engineered lymphocyte therapy after PBSCT may be an effective treatment for NHL.

NCT ID: NCT00118352 Active, not recruiting - Clinical trials for Chronic Myelomonocytic Leukemia

Alemtuzumab, Fludarabine Phosphate, and Total-Body Irradiation Followed by Cyclosporine and Mycophenolate Mofetil in Treating Patients Who Are Undergoing Donor Stem Cell Transplant for Hematologic Cancer

Start date: March 2005
Phase: Phase 2
Study type: Interventional

This phase II trial is studying the side effects and best dose of alemtuzumab when given together with fludarabine phosphate and total-body irradiation followed by cyclosporine and mycophenolate mofetil in treating patients who are undergoing a donor stem cell transplant for hematologic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate, a monoclonal antibody, such as alemtuzumab, and radiation therapy before a donor stem cell transplant helps stop the growth of cancer cells. Giving chemotherapy or radiation therapy before or after transplant also stops the patient's immune system from rejecting the donor's bone marrow stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil after the transplant may stop this from happening.

NCT ID: NCT00112723 Active, not recruiting - Clinical trials for Recurrent Mantle Cell Lymphoma

Flavopiridol in Treating Patients With Relapsed or Refractory Lymphoma or Multiple Myeloma

Start date: December 2005
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial is studying the side effects and best dose of flavopiridol and to see how well it works in treating patients with lymphoma or multiple myeloma. Drugs used in chemotherapy, such as flavopiridol, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing.