View clinical trials related to Recurrent Glioma.
Filter by:This randomized phase II trial studies how well lose dose bevacizumab with Hypofractionated Stereotactic Radiotherapy (HSRT) works versus bevacizumab alone in treating patients with glioblastoma at first recurrence. The primary endpoint is 6-month progress-free survivaloverall survival after the treatment. Secondary endpoints included overall survival, objective response rate, cognitive function, quality of life and toxicity.
Study AG881-C-004 is a phase 3, multicenter, randomized, double-blind, placebo-controlled study comparing the efficacy of vorasidenib to placebo in participants with residual or recurrent Grade 2 glioma with an IDH1 or IDH2 mutation who have undergone surgery as their only treatment. Participants will be required to have central confirmation of IDH mutation status prior to randomization. Approximately 340 participants are planned to be randomized 1:1 to receive orally administered vorasidenib 40 mg QD or placebo.
This phase II Pediatric MATCH trial studies how well ulixertinib works in treating patients with solid tumors that have spread to other places in the body (advanced), non-Hodgkin lymphoma, or histiocytic disorders that have a genetic alteration (mutation) in a signaling pathway called MAPK. A signaling pathway consists of a group of molecules in a cell that control one or more cell functions. Genes in the MAPK pathway are frequently mutated in many types of cancers. Ulixertinib may stop the growth of cancer cells that have mutations in the MAPK pathway.
This phase II Pediatric MATCH trial studies how well palbociclib works in treating patients with Rb positive solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with activating alterations (mutations) in cell cycle genes that have spread to other places in the body and have come back or do not respond to treatment. Palbociclib may stop the growth of cancer cells by blocking some of the proteins needed for cell growth.
This phase I trial studies the side effects and best dose of memory-enriched T cells in treating patients with grade II-IV glioma that has come back (recurrent) or does not respond to treatment (refractory). Memory enriched T cells such as HER2(EQ)BBζ/CD19t+ T cells may enter and express its genes in immune cells. Immune cells can be engineered to kill glioma cells in the laboratory by inserting a piece of deoxyribonucleic acid (DNA) into the immune cells that allows them to recognize glioma cells. A vector called lentivirus is used to carry the piece of DNA into the immune cell. It is not known whether these immune cells will kill glioma tumor cells when given to patients.
This phase II Pediatric MATCH trial studies how well olaparib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with defects in deoxyribonucleic acid (DNA) damage repair genes that have spread to other places in the body (advanced) and have come back (relapsed) or do not respond to treatment (refractory). Olaparib is an inhibitor of PARP, an enzyme that helps repair DNA when it becomes damaged. Blocking PARP may help keep cancer cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy.
This phase II Pediatric MATCH trial studies how well larotrectinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with NTRK fusions that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) and have come back (relapased) or does not respond to treatment (refractory). Larotrectinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase II Pediatric MATCH trial studies how well samotolisib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with TSC or PI3K/MTOR mutations that have spread to other places in the body (metastatic) and have come back (recurrent) or do not respond to treatment (refractory). Samotolisib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase II Pediatric MATCH trial studies how well tazemetostat works in treating patients with brain tumors, solid tumors, non-Hodgkin lymphoma, or histiocytic disorders that have come back (relapsed) or do not respond to treatment (refractory) and have EZH2, SMARCB1, or SMARCA4 gene mutations. Tazemetostat may stop the growth of tumor cells by blocking EZH2 and its relation to some of the pathways needed for cell proliferation.
This phase II trial studies how well olaparib works in treating patients with glioma, cholangiocarcinoma, or solid tumors with IDH1 or IDH2 mutations that has spread from where it first started (primary site) to other places in the body (metastatic) and that does not respond to treatment (refractory). Olaparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.