Clinical Trials Logo

Recurrent Glioma clinical trials

View clinical trials related to Recurrent Glioma.

Filter by:

NCT ID: NCT03526250 Recruiting - Clinical trials for Recurrent Neuroblastoma

Palbociclib in Treating Patients With Relapsed or Refractory Rb Positive Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With Activating Alterations in Cell Cycle Genes (A Pediatric MATCH Treatment Trial)

Start date: June 22, 2018
Phase: Phase 2
Study type: Interventional

This phase II Pediatric MATCH trial studies how well palbociclib works in treating patients with Rb positive solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with activating alterations (mutations) in cell cycle genes that have spread to other places in the body and have come back or do not respond to treatment. Palbociclib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT03411408 Recruiting - Malignant Glioma Clinical Trials

Accelerated Hypofractionated Intensity - Modulated Radiotherapy After Hyperbaric Oxygenation for Recurrent High Grade Glioma.

HBO-RT
Start date: February 22, 2018
Phase: N/A
Study type: Interventional

This is a pilot study of radiotherapy using Hypofractionated image - guided helical tomotherapy after hyperbaric oxygen HBO therapy for treatment of recurrent malignant High-grade gliomas. HBO therapy will be perform in conjunction with each RT session. The treatment scheme is: Hyperbaric oxygenation therapy (the maximum period of time from completion of decompression to RT is 60 min) followed by tomotherapy (3-5 consecutive sessions- one fraction per day , 5 Gy / die ). The trial will enroll 24 patients in 24 months with a follow-up period of 1 year.

NCT ID: NCT03389230 Recruiting - Glioblastoma Clinical Trials

Memory-Enriched T Cells in Treating Patients With Recurrent or Refractory Grade III-IV Glioma

Start date: July 2018
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of memory-enriched T cells in treating patients with grade II-IV glioma that has come back or does not respond to treatment. Memory enriched T cells such as HER2(EQ)BBζ/CD19t+-expressing Tcm may enter and express its genes in immune cells. Immune cells can be engineered to kill glioma cells in the laboratory by inserting a piece of deoxyribonucleic acid (DNA) into the immune cells that allows them to recognize glioma cells. A vector called lentivirus is used to carry the piece of DNA into the immune cell. It is not known whether these immune cells will kill glioma tumor cells when given to patients.

NCT ID: NCT03233204 Recruiting - Malignant Glioma Clinical Trials

Olaparib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With Defects in DNA Damage Repair Genes (A Pediatric MATCH Treatment Trial)

Start date: July 24, 2017
Phase: Phase 2
Study type: Interventional

This phase II Pediatric MATCH trial studies how well olaparib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with defects in deoxyribonucleic acid (DNA) damage repair genes that have spread to other places in the body and have come back or do not respond to treatment. Olaparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT03213704 Recruiting - Malignant Glioma Clinical Trials

Larotrectinib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With NTRK Fusions (A Pediatric MATCH Treatment Trial)

Start date: July 24, 2017
Phase: Phase 2
Study type: Interventional

This phase II Pediatric MATCH trial studies how well larotrectinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with NTRK fusions that have spread to other places in the body and have come back or do not respond to treatment. Larotrectinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT03213678 Recruiting - Malignant Glioma Clinical Trials

PI3K/mTOR Inhibitor LY3023414 in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With TSC or PI3K/MTOR Mutations (A Pediatric MATCH Treatment Trial)

Start date: July 31, 2017
Phase: Phase 2
Study type: Interventional

This phase II Pediatric MATCH trial studies how well PI3K/mTOR inhibitor LY3023414 works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with TSC or PI3K/MTOR mutations that have spread to other places in the body and have come back or do not respond to treatment. PI3K/mTOR inhibitor LY3023414 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT03213665 Suspended - Clinical trials for Recurrent Neuroblastoma

Tazemetostat in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With EZH2, SMARCB1, or SMARCA4 Gene Mutations (A Pediatric MATCH Treatment Trial)

Start date: July 24, 2017
Phase: Phase 2
Study type: Interventional

This phase II Pediatric MATCH trial studies how well tazemetostat works in treating patients with solid tumors, non-hodgkin lymphoma, or histiocytic disorders that have spread to other places in the body and have come back or do not respond to treatment and have EZH2, SMARCB1, or SMARCA4 gene mutations. Tazemetostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT03212274 Suspended - Glioblastoma Clinical Trials

Olaparib in Treating Patients With Advanced Glioma, Cholangiocarcinoma, or Solid Tumors With IDH1 or IDH2 Mutations

Start date: March 30, 2018
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well olaparib works in treating patients with glioma, cholangiocarcinoma, or solid tumors with IDH1 or IDH2 mutations that have spread to other places in the body and usually cannot be cured or controlled with treatment. Olaparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT03155620 Recruiting - Malignant Glioma Clinical Trials

Targeted Therapy Directed by Genetic Testing in Treating Pediatric Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphomas, or Histiocytic Disorders (The Pediatric MATCH Screening Trial)

Start date: July 24, 2017
Phase: Phase 2
Study type: Interventional

This Pediatric MATCH screening and multi-sub-study phase II trial studies how well treatment that is directed by genetic testing works in pediatric patients with solid tumors, non-Hodgkin lymphomas, or histiocytic disorders that have progressed following at least one line of standard systemic therapy and/or for which no standard treatment exists that has been shown to prolong survival. Genetic tests look at the unique genetic material (genes) of patients' tumor cells. Patients with genetic changes or abnormalities (mutations) may benefit more from treatment which targets their tumor's particular genetic mutation, and may help doctors plan better treatment for patients with solid tumors or non-Hodgkin lymphomas.

NCT ID: NCT02465060 Recruiting - Lymphoma Clinical Trials

Targeted Therapy Directed by Genetic Testing in Treating Patients With Advanced Refractory Solid Tumors, Lymphomas, or Multiple Myeloma (The MATCH Screening Trial)

Start date: August 12, 2015
Phase: Phase 2
Study type: Interventional

This phase II MATCH trial studies how well treatment that is directed by genetic testing works in patients with solid tumors or lymphomas that have progressed following at least one line of standard treatment or for which no agreed upon treatment approach exists. Genetic tests look at the unique genetic material (genes) of patients' tumor cells. Patients with genetic abnormalities (such as mutations, amplifications, or translocations) may benefit more from treatment which targets their tumor's particular genetic abnormality. Identifying these genetic abnormalities first may help doctors plan better treatment for patients with solid tumors, lymphomas, or multiple myeloma.