View clinical trials related to Recurrent Glioblastoma.
Filter by:Glioblastoma multiforme (GBM) are the most prevalent malignant tumor in central nervous system. At recurrence, no clear standard-of-care therapy is agreed for recurrent GBM (rGBM) and median overall survival is estimated to rarely exceed 6-9 months with effective therapies. Neoadjuvant therapy with anti-PD-1 monoclonal antibodies were confirmed to be helpful to extend survival in rGBM. Vaccine, dendritic cells (DCs) pulsed with glioblastoma stem-like cell (GSC) antigens (GSC-DCV), could extend survival for GBM patients in our previous clinical study (PMID: 30159779). The purpose of this study is to evaluate the safety and efficiency of using the neoadjuvant therapy with PD-1 antibody (Carilizumab) plus DC vaccine (GSC-DCV) in patients with recurrent glioblastoma.
This phase I trial studies the effects of ONC201 in combination with standard of care radiation therapy in treating patients with glioblastoma that has come back (recurrent). ONC201 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high energy photons to kill tumors cells and shrink tumors. Giving ONC201 in combination with radiation therapy may help treat patients with recurrent glioblastoma.
Patients with recurrent Glioblastoma (GBM) are commonly presented to surgeons, along with the question of whether or not to re-resect the recurrence. There is no Level 1 evidence to support a role for repeat surgery in this context, but a multitude of observational research suggests that repeat surgery may improve quality survival. Unfortunately, these studies all suffer from selection bias. The goal of this study is to provide a care trial context to help neurosurgeons manage patients presenting with recurrent GBM, with no additional risks, tests, or interventions than what they would normally encounter in routine care. Secondary goals include a test of the hypothesis that repeat resection can improve median overall survival, and that it can increase the number of days of survival outside of a hospital/nursing/palliative care facility.
This study is looking at the safety and efficacy of the drug combination of ASP8374 with cemiplimab in people with recurrent malignant glioma. The study will be conducted in two parts, the first portion of the study will be to establish the highest dose of ASP8374 that can be given safely with cemiplimab and will be used as the recommended dose of ASP8374 in combination with cemiplimab for the second portion of the study. The second portion of the study will be to compare the effect of having ASP8374 in combination with cemiplimab prior to surgery. The names of the study drugs involved in this study are: - ASP8374 - Cemiplimab
In view of the strong biological rationale of employing PARP inhibition in high grade glioma, the current study purposes testing of talazoparib in a biomarker-enriched group of glioma. Carboplatin will be added to sensitize the tumor to PARP inhibition, and low dose radiation therapy will be applied to increase talazoparib drug penetration through blood-brain barrier. The goal is to estimate the effect size of such combinational treatment approach in recurrent high-grade glioma with DNA damage repair deficiency (dDDR)
This phase II trial studies the best dose and effect of tocilizumab in combination with atezolizumab and stereotactic radiation therapy in treating glioblastoma patients whose tumor has come back after initial treatment (recurrent). Tocilizumab is a monoclonal antibody that binds to receptors for a protein called interleukin-6 (IL-6), which is made by white blood cells and other cells in the body as well as certain types of cancer. This may help lower the body's immune response and reduce inflammation. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Fractionated stereotactic radiation therapy uses special equipment to precisely deliver multiple, smaller doses of radiation spread over several treatment sessions to the tumor. The goal of this study is to change a tumor that is unresponsive to cancer therapy into a more responsive one. Therapy with fractionated stereotactic radiotherapy in combination with tocilizumab may suppress the inhibitory effect of immune cells surrounding the tumor and consequently allow an immunotherapy treatment by atezolizumab to activate the immune response against the tumor. Combination therapy with tocilizumab, atezolizumab and fractionated stereotactic radiation therapy may shrink or stabilize the cancer better than radiation therapy alone in patients with recurrent glioblastoma.
This is a pilot phase I study to evaluate the safety and efficacy of NKG2D CAR-T cell therapy in patients with relapsed and/or refractory glioblastoma
Thirty patients were enrolled in this study, mainly patients with first recurrence of glioblastoma, and the requirement is that they can receive secondary radiotherapy. Regardless of whether the patient has received a second operation or the MGMT promoter is methylated, they can be included in this study. After enrollment, patients were given niraparib 300mg/day (body weight ≥77Kg and baseline platelet count ≥150,000/µL) or 200mg/day (body weight <77Kg or baseline platelet count <150,000/µL), combined with radiotherapy (total dose 55Gy), follow-up Time 1 year. Until the patient has disease progression or intolerance or voluntarily withdraw from the study.
The purpose of this trial is to assess the overall survival of patients treated with the Xoft Axxent eBx System and post-radiation adjuvant Bevacizumab for single-fraction IORT following maximal neurosurgical resection of recurrent glioblastoma. A historical comparison will be made to the results of the EBRT + Bevacizumab arm of RTOG 1205.
All patients will receive TTFields therapy and additionally Stereotactic Radiosurgery . Radiosurgery will be based on MRI and FET-PET or MRI alone. Addition of FET-PET will be preferred option.