Clinical Trials Logo

Recurrent Ependymoma clinical trials

View clinical trials related to Recurrent Ependymoma.

Filter by:

NCT ID: NCT06466798 Not yet recruiting - Clinical trials for Recurrent Medulloblastoma

Fourth Ventricular Administration of Immune Checkpoint Inhibitor (Nivolumab) and Methotrexate or 5-Azacytidine for Recurrent Medulloblastoma, Ependymoma, and Other CNS Malignancies

Start date: July 1, 2024
Phase: Phase 1
Study type: Interventional

The goal of this clinical trial is to assess the safety, toxicity, and antitumor activity of fourth ventricular infusions of nivolumab plus 5-azacytidine for recurrent ependymoma and nivolumab plus methotrexate for recurrent medulloblastoma and other CNS malignancies. Additionally, the study will explore immunologic responses to nivolumab. The hypothesis is that local administration of nivolumab, an immune checkpoint inhibitor, is safe and will lead to even more robust treatment responses when administered following 5-azacytidine in patients with recurrent ependymoma or methotrexate in patients with medulloblastoma or other CNS tumors.

NCT ID: NCT04743661 Active, not recruiting - Clinical trials for Recurrent Medulloblastoma

131I-Omburtamab, in Recurrent Medulloblastoma and Ependymoma

Start date: April 4, 2022
Phase: Phase 2
Study type: Interventional

A Phase 2 study investigating the addition of cRIT 131I-omburtamab to irinotecan, temozolomide, and bevacizumab for patients with recurrent medulloblastoma. A feasibility cohort is included to assess the feasibility of incorporating cRIT 131I-omburtamab for patients with recurrent ependymoma. Direct intraventricular delivery of radiolabeled tumor-specific antibodies may aid in both the detection and treatment of recurrent disease for these highly specific pediatric patients with recurrent tumors.

NCT ID: NCT04732065 Recruiting - Glioblastoma Clinical Trials

ONC206 for Treatment of Newly Diagnosed, Recurrent Diffuse Midline Gliomas, and Other Recurrent Malignant CNS Tumors

PNOC023
Start date: August 23, 2021
Phase: Phase 1
Study type: Interventional

This phase I trial studies the effects and best dose of ONC206 alone or in combination with radiation therapy in treating patients with diffuse midline gliomas that is newly diagnosed or has come back (recurrent) or other recurrent primary malignant CNS tumors. ONC206 is a recently discovered compound that may stop cancer cells from growing. This drug has been shown in laboratory experiments to kill brain tumor cells by causing a so called "stress response" in tumor cells. This stress response causes cancer cells to die, but without affecting normal cells. ONC206 alone or in combination with radiation therapy may be effective in treating newly diagnosed or recurrent diffuse midline gliomas and other recurrent primary malignant CNS tumors.

NCT ID: NCT04320888 Active, not recruiting - Clinical trials for Refractory Malignant Solid Neoplasm

Selpercatinib for the Treatment of Advanced Solid Tumors, Lymphomas, or Histiocytic Disorders With Activating RET Gene Alterations, a Pediatric MATCH Treatment Trial

Start date: May 3, 2021
Phase: Phase 2
Study type: Interventional

This phase II pediatric MATCH treatment trial studies how well selpercatinib works in treating patients with solid tumors that may have spread from where they first started to nearby tissue, lymph nodes, or distant parts of the body (advanced), lymphomas, or histiocytic disorders that have activating RET gene alterations. Selpercatinib may block the growth of cancer cells that have specific genetic changes in an important signaling pathway (called the RET pathway) and may reduce tumor size.

NCT ID: NCT04284774 Active, not recruiting - Clinical trials for Malignant Solid Neoplasm

Tipifarnib for the Treatment of Advanced Solid Tumors, Lymphoma, or Histiocytic Disorders With HRAS Gene Alterations, a Pediatric MATCH Treatment Trial

Start date: October 13, 2020
Phase: Phase 2
Study type: Interventional

This phase II pediatric MATCH trial studies how well tipifarnib works in treating patients with solid tumors that have recurred or spread to other places in the body (advanced), lymphoma, or histiocytic disorders, that have a genetic alteration in the gene HRAS. Tipifarnib may block the growth of cancer cells that have specific genetic changes in a gene called HRAS and may reduce tumor size.

NCT ID: NCT04195555 Active, not recruiting - Clinical trials for Refractory Malignant Solid Neoplasm

Ivosidenib in Treating Patients With Advanced Solid Tumors, Lymphoma, or Histiocytic Disorders With IDH1 Mutations (A Pediatric MATCH Treatment Trial)

Start date: July 20, 2020
Phase: Phase 2
Study type: Interventional

This phase II Pediatric MATCH trial studies how well ivosidenib works in treating patients with solid tumors that have spread to other places in the body (advanced), lymphoma, or histiocytic disorders that have IDH1 genetic alterations (mutations). Ivosidenib may block the growth of cancer cells that have specific genetic changes in an important signaling pathway called the IDH pathway.

NCT ID: NCT03572530 Recruiting - Clinical trials for Recurrent Ependymoma

Infusion of 5-Azacytidine (5-AZA) Into the Fourth Ventricle in Patients With Recurrent Posterior Fossa Ependymoma

5-AZA
Start date: February 8, 2019
Phase: Phase 1
Study type: Interventional

This study seeks to determine the optimum dose frequency of 5-Azacytidin (5-AZA) infusions into the fourth ventricle of the brain. The study's primary objective is to establish the maximum tolerated dose for infusions of 5-Azacytidine into the fourth ventricle in patients with recurrent ependymoma. The study's secondary objective is to assess the antitumor activity of 5-Azacytidine infusions into the fourth ventricle based upon imaging studies and cytology.

NCT ID: NCT03213704 Active, not recruiting - Clinical trials for Advanced Malignant Solid Neoplasm

Larotrectinib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With NTRK Fusions (A Pediatric MATCH Treatment Trial)

Start date: August 23, 2017
Phase: Phase 2
Study type: Interventional

This phase II Pediatric MATCH trial studies how well larotrectinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with NTRK fusions that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) and have come back (relapased) or does not respond to treatment (refractory). Larotrectinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT03213678 Active, not recruiting - Malignant Glioma Clinical Trials

Samotolisib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With TSC or PI3K/MTOR Mutations (A Pediatric MATCH Treatment Trial)

Start date: November 28, 2017
Phase: Phase 2
Study type: Interventional

This phase II Pediatric MATCH trial studies how well samotolisib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with TSC or PI3K/MTOR mutations that have spread to other places in the body (metastatic) and have come back (recurrent) or do not respond to treatment (refractory). Samotolisib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT03213665 Active, not recruiting - Clinical trials for Advanced Malignant Solid Neoplasm

Tazemetostat in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With EZH2, SMARCB1, or SMARCA4 Gene Mutations (A Pediatric MATCH Treatment Trial)

Start date: November 13, 2017
Phase: Phase 2
Study type: Interventional

This phase II Pediatric MATCH trial studies how well tazemetostat works in treating patients with brain tumors, solid tumors, non-Hodgkin lymphoma, or histiocytic disorders that have come back (relapsed) or do not respond to treatment (refractory) and have EZH2, SMARCB1, or SMARCA4 gene mutations. Tazemetostat may stop the growth of tumor cells by blocking EZH2 and its relation to some of the pathways needed for cell proliferation.