Clinical Trials Logo

Recurrent Brain Neoplasm clinical trials

View clinical trials related to Recurrent Brain Neoplasm.

Filter by:

NCT ID: NCT04588246 Recruiting - Metastatic Melanoma Clinical Trials

Testing the Addition of Whole Brain Radiotherapy Using a Technique That Avoids the Hippocampus to Stereotactic Radiosurgery in People With Cancer That Has Spread to the Brain and Come Back in Other Areas of the Brain After Earlier Stereotactic Radiosurgery

Start date: December 15, 2020
Phase: Phase 3
Study type: Interventional

This phase III trial compares the effect of adding whole brain radiotherapy with hippocampal avoidance and memantine to stereotactic radiosurgery versus stereotactic radiosurgery alone in treating patients with cancer that has spread to the brain and come back in other areas of the brain after earlier stereotactic radiosurgery. Hippocampus avoidance during whole-brain radiation therapy decreases the amount of radiation that is delivered to the hippocampus, which is a brain structure that is important for memory. The medicine memantine is also often given with whole brain radiation therapy because it may decrease the risk of side effects of radiation on thinking and memory. Stereotactic radiosurgery delivers a high dose of radiation only to the small areas of cancer in the brain and avoids the surrounding normal brain tissue. Adding whole brain radiotherapy with hippocampal avoidance and memantine to stereotactic radiosurgery may be effective in shrinking or stabilizing cancer that has spread to the brain and returned in other areas of the brain after receiving stereotactic radiosurgery.

NCT ID: NCT03071913 Completed - Clinical trials for Metastatic Malignant Neoplasm in the Brain

Blood Brain Barrier Differences in Patients With Brain Tumors Undergoing Surgery

Start date: September 20, 2017
Phase:
Study type: Observational

This pilot research trial studies blood brain barrier differences in patients with brain tumors undergoing surgery. Studying samples of tissue and blood from patients with brain tumors in the laboratory may help doctors to understand how well drugs get into different parts of a brain tumor. This may help them to determine which types of drugs may be best for treating brain tumors.

NCT ID: NCT02754544 Recruiting - Clinical trials for Metastatic Malignant Neoplasm in the Brain

Electrocorticography in Mapping Functional Brain Areas During Surgery in Patients With Brain Tumors

Start date: July 22, 2016
Phase: N/A
Study type: Interventional

This pilot clinical trial studies how well electrocorticography works in mapping functional brain areas during surgery in patients with brain tumors. Using a larger than the standard mapping grid currently used during brain tumor surgery or a high-definition grid for electrocorticogram brain mapping may help doctors to better identify which areas of the brain are active during specific limb movement and speech during surgery in patients with brain tumors.

NCT ID: NCT02698254 Active, not recruiting - Clinical trials for Recurrent Brain Neoplasm

Radiation Therapy in Treating Patients With Recurrent Brain Tumors Who Have Undergone Previous Radiation Therapy

Start date: July 20, 2016
Phase: N/A
Study type: Interventional

This pilot clinical trial studies the side effects and best dose of radiation therapy in patients with brain tumors that have come back after previous treatment with radiation therapy. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Giving radiation therapy in different ways may kill more tumor cells.

NCT ID: NCT02671981 Active, not recruiting - Glioblastoma Clinical Trials

Concurrent Bevacizumab With or Without Radiation Therapy in Treating Patients With Recurrent Glioblastoma

Start date: December 2012
Phase: Phase 2
Study type: Interventional

This randomized phase II trial studies how well bevacizumab with or without radiation therapy works in treating patients with glioblastoma that has returned after a period of improvement. Monoclonal antibodies, such as bevacizumab, may block tumor growth by targeting certain cells. Specialized radiation therapy that delivers a high dose of radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue. It is not yet known whether bevacizumab is more effective with or without radiation therapy in treating patients with recurrent glioblastoma.

NCT ID: NCT02661282 Completed - Glioblastoma Clinical Trials

Autologous CMV-Specific Cytotoxic T Cells and Temozolomide in Treating Patients With Glioblastoma

Start date: June 1, 2016
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies the side effects and best dose of autologous cytomegalovirus (CMV)-specific cytotoxic T cells when given together with temozolomide and to see how well they work in treating patients with glioblastoma. Autologous CMV-specific cytotoxic T cells may stimulate the immune system to attack specific tumor cells and stop them from growing or kill them. Drugs used in chemotherapy, such as temozolomide, may work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving autologous CMV-specific cytotoxic T cells with temozolomide may be a better treatment for patients with glioblastoma.

NCT ID: NCT02658981 Completed - Glioblastoma Clinical Trials

Anti-LAG-3 Alone & in Combination w/ Nivolumab Treating Patients w/ Recurrent GBM (Anti-CD137 Arm Closed 10/16/18)

Start date: August 24, 2016
Phase: Phase 1
Study type: Interventional

This phase I trial studies the safety and best dose of anti-LAG-3 (anti-LAG-3 monoclonal antibody BMS-986016) or urelumab alone and in combination with nivolumab in treating patients with glioblastoma that has returned (recurrent). Anti-LAG-3 monoclonal antibody BMS-986016, urelumab, and nivolumab are antibodies (a type of protein) that may stimulate the cells in the immune system to attack tumor cells. It is not yet known whether anti-LAG-3 monoclonal antibody BMS-986016 or urelumab alone or in combination with nivolumab may kill more tumor cells. (The Anti-CD137 antibody (BMS-663513 - urelumab) treatment arm closed by BMS on 10/16/18 due to closure of BMS Urelumab development program. Subjects currently on treatment may continue.)

NCT ID: NCT02575027 Completed - Glioblastoma Clinical Trials

Palliative 4pi Radiotherapy in Treating Patients With Recurrent Glioblastoma Multiforme

Start date: November 12, 2014
Phase: N/A
Study type: Interventional

This pilot clinical trial studies the feasibility of palliative 4pi radiotherapy in treating patients with glioblastoma multiforme that has come back after standard chemoradiation. A new radiotherapy delivery planning system, called 4pi radiotherapy, may help improve radiation delivery by improving dose coverage to the treatment target, while reducing the dose to surrounding normal tissues.

NCT ID: NCT02521090 Withdrawn - Adult Gliosarcoma Clinical Trials

EGFRBi-Armed Autologous T Cells in Treating Patients With Recurrent or Refractory Glioblastoma

Start date: August 2015
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies the side effects and best dose of epidermal growth factor receptor bispecific antibody (EGFRBi)-armed autologous T cells and how well it works in treating patients with glioblastoma that have come back or does not respond to treatment. EGFRBi-armed autologous T cells coated with antibodies (proteins used by the immune system to target and kill foreign objects such as cancer cells) may have great ability to seek out, attach to, and destroy glioblastoma cells.

NCT ID: NCT02389309 Active, not recruiting - Clinical trials for Advanced Malignant Solid Neoplasm

Dasatinib, Temsirolimus, and Cyclophosphamide in Treating Patients With Advanced, Recurrent, or Refractory Solid Tumors

Start date: October 5, 2015
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of dasatinib and temsirolimus when given together with cyclophosphamide in treating patients with solid tumors that have spread to other places in the body, have come back, or have not respond to previous treatment. Dasatinib and temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as cyclophosphamide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving dasatinib and temsirolimus together with cyclophosphamide may be a better treatment for advanced solid tumors.