View clinical trials related to Recurrent Acute Myeloid Leukemia.
Filter by:This phase I/II trial studies how well quizartinib, decitabine, and venetoclax work in treating participants with acute myeloid leukemia or high risk myelodysplastic syndrome that is untreated or has come back (relapsed). Quizartinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as decitabine and venetoclax, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving quizartinib and decitabine may work better at treating acute myeloid leukemia and myelodysplastic syndrome.
This phase I/II trial studies the side effects and best dose of milademetan tosylate and to see how well it works with cytarabine with or without ventoclax in treating participants with acute myeloid leukemia that has come back (recurrent) or that does not respond to treatment (refractory). Milademetan tosylate and ventoclax may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known if giving milademetan tosylate and low-dose cytarabine with or without ventoclax will work better in treating participants with recurrent or refractory acute myeloid leukemia.
This phase I trial studies the side effects and best dose of edetate calcium disodium or succimer in treating patients with acute myeloid leukemia or myelodysplastic syndrome undergoing chemotherapy. Edetate calcium disodium or succimer may help to lower the level of metals found in the bone marrow and blood and may help to control the disease and/or improve response to chemotherapy.
This phase II trial studies how well liposome-encapsulated daunorubicin-cytarabine and venetoclax work in treating participants with acute myeloid leukemia that has come back (relapsed), does not respond to treatment (refractory), or has not been treated (untreated). Drugs used in chemotherapy, such as liposome-encapsulated daunorubicin-cytarabine and venetoclax, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
This phase II trial studies how well 3 different drug combinations prevent graft versus host disease (GVHD) after donor stem cell transplant. Calcineurin inhibitors, such as cyclosporine and tacrolimus, may stop the activity of donor cells that can cause GVHD. Chemotherapy drugs, such as cyclophosphamide and methotrexate, may also stop the donor cells that can lead to GVHD while not affecting the cancer-fighting donor cells. Immunosuppressive therapy, such as anti-thymocyte globulin (ATG), is used to decrease the body's immune response and reduces the risk of GVHD. It is not yet known which combination of drugs: 1) ATG, methotrexate, and calcineurin inhibitor 2) cyclophosphamide and calcineurin inhibitor, or 3) methotrexate and calcineurin inhibitor may work best to prevent graft versus host disease and result in best overall outcome after donor stem cell transplant.
This phase Ib trial studies the side effects and best dose of nivolumab and ipilimumab after donor stem cell transplant in treating patients with high risk acute myeloid leukemia or myelodysplastic syndrome that does not respond to treatment or has come back. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.
This phase II trial studies how well edicotinib (JNJ-40346527) works in treating participants with acute myeloid leukemia that has come back or does not respond to treatment. JNJ-40346527 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase Ib/II trial studies the side effects and best dose of venetoclax and how well it works when given together with ivosidenib with or without azacitidine, in treating patients with IDH1-mutated hematologic malignancies. Venetoclax and ivosidenib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving ivosidenib and venetoclax with azacitidine may work better in treating patients with hematologic malignancies compared to ivosidenib and venetoclax alone.
This phase II trial studies how well venetoclax and decitabine work in treating participants with acute myeloid leukemia that has come back or does not respond to treatment, or with high-risk myelodysplastic syndrome that has come back. Drugs used in chemotherapy, such as venetoclax and decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
This phase Ib/II trial studies the side effects and best dose of anti-OX40 antibody PF-04518600 (OX40) and how well it works alone or in combination with venetoclax, avelumab, glasdegib, gemtuzumab ozogamicin, and azacitidine in treating patients with acute myeloid leukemia that has come back or does not respond to treatment. Immunotherapy with monoclonal antibodies, such as OX40, avelumab, and gemtuzumab ozogamicin, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Glasdegib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as venetoclax and azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving OX40, venetoclax, avelumab, glasdegib, gemtuzumab ozogamicin, and azacitidine may work better in treating patients with acute myeloid leukemia.