Clinical Trials Logo

Recurrent Acute Myeloid Leukemia clinical trials

View clinical trials related to Recurrent Acute Myeloid Leukemia.

Filter by:
  • Completed  
  • Page 1 ·  Next »

NCT ID: NCT04752163 Completed - Clinical trials for Hematopoietic and Lymphoid Cell Neoplasm

DS-1594b With or Without Azacitidine, Venetoclax, or Mini-HCVD for the Treatment of Relapsed or Refractory Acute Myeloid Leukemia or Acute Lymphoblastic Leukemia

Start date: March 25, 2021
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies the effect of DS-1594b with or without azacitidine, venetoclax, or mini-HCVD in treating patients with acute myeloid leukemia or acute lymphoblastic leukemia that has come back (recurrent) or not responded to treatment (refractory). Chemotherapy drugs, such as azacitidine, venetoclax, and mini-HCVD, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. DS-1594b may inhibit specific protein bindings that cause blood cancer. Giving DS-1594b, azacitidine, and venetoclax, or mini-HCVD may work better in treating patients with acute myeloid leukemia or acute lymphoblastic leukemia.

NCT ID: NCT04487106 Completed - Clinical trials for Refractory Acute Myeloid Leukemia

Azacitidine, Venetoclax, and Trametinib for the Treatment of Relapsed or Refractory Acute Myeloid Leukemia or Higher-Risk Myelodysplastic Syndrome

Start date: July 21, 2020
Phase: Phase 2
Study type: Interventional

This phase II trial investigates how well azacitidine, venetoclax, and trametinib work in treating patients with acute myeloid leukemia or higher-risk myelodysplastic syndrome that has come back (relapsed) or has not responded to treatment (refractory). Chemotherapy drugs, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Venetoclax and trametinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. The goal of this study is learn if the combination of azacitidine, venetoclax, and trametinib can help to control acute myeloid leukemia or myelodysplastic syndrome.

NCT ID: NCT04146038 Completed - Clinical trials for Acute Myeloid Leukemia

Salsalate, Venetoclax, and Decitabine or Azacitidine for the Treatment of Acute Myeloid Leukemia or Advanced Myelodysplasia/Myeloproliferative Disease

Start date: October 26, 2020
Phase: Phase 2
Study type: Interventional

This phase II trial studies the side effects of salsalate when added to venetoclax and decitabine or azacitidine in treating patients with acute myeloid leukemia or myelodysplasia/myeloproliferative disease that has spread to other places in the body (advanced). Drugs used in chemotherapy, such as salsalate, venetoclax, decitabine, and azacitidine work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.

NCT ID: NCT03813147 Completed - Clinical trials for Refractory Acute Myeloid Leukemia

Pevonedistat, Azacitidine, Fludarabine Phosphate, and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia or Myelodysplastic Syndrome

Start date: May 17, 2019
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and how well pevonedistat, azacitidine, fludarabine phosphate, and cytarabine work in treating patients with acute myeloid leukemia or myelodysplastic syndrome that has come back (relapsed) or has not responded to treatment (refractory). Pevonedistat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as azacitidine, fludarabine phosphate, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy) and pevonedistat may work better in treating patients with acute myeloid leukemia or myelodysplastic syndrome.

NCT ID: NCT03735875 Completed - Clinical trials for Recurrent Acute Myeloid Leukemia

Venetoclax and Quizartinib in Treating Patients With FLT3-mutated Recurrent or Refractory Acute Myeloid Leukemia

Start date: January 25, 2019
Phase: Phase 1/Phase 2
Study type: Interventional

This phase Ib/II trial studies the side effects and best dose of venetoclax in combination with quizartinib and how well they work in treating patients with acute myeloid leukemia that has come back or does not respond to treatment, and who are FLT3-mutation positive. Venetoclax and quizartinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT03701295 Completed - Clinical trials for Refractory Acute Myeloid Leukemia

Pinometostat and Azacitidine in Treating Patients With Relapsed, Refractory, or Newly Diagnosed Acute Myeloid Leukemia With 11q23 Rearrangement

Start date: March 6, 2020
Phase: Phase 1/Phase 2
Study type: Interventional

This phase Ib/II trial studies the side effects and best dose of pinometostat when given together with azacitidine and to see how well it works in treating patients with acute myeloid leukemia that has come back (relapsed), does not respond to treatment (refractory), or is newly diagnosed, with an 11q23 rearrangement. Pinometostat and azacitidine may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT03390296 Completed - Clinical trials for Refractory Acute Myeloid Leukemia

OX40, Venetoclax, Avelumab, Glasdegib, Gemtuzumab Ozogamicin, and Azacitidine in Relapsed or Refractory Acute Myeloid Leukemia

Start date: December 27, 2017
Phase: Phase 1/Phase 2
Study type: Interventional

This phase Ib/II trial studies the side effects and best dose of anti-OX40 antibody PF-04518600 (OX40) and how well it works alone or in combination with venetoclax, avelumab, glasdegib, gemtuzumab ozogamicin, and azacitidine in treating patients with acute myeloid leukemia that has come back or does not respond to treatment. Immunotherapy with monoclonal antibodies, such as OX40, avelumab, and gemtuzumab ozogamicin, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Glasdegib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as venetoclax and azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving OX40, venetoclax, avelumab, glasdegib, gemtuzumab ozogamicin, and azacitidine may work better in treating patients with acute myeloid leukemia.

NCT ID: NCT03063944 Completed - Clinical trials for Acute Myeloid Leukemia

STAT Inhibitor OPB-111077, Decitabine and Venetoclax in Treating Patients With Acute Myeloid Leukemia That Is Refractory, Relapsed or Newly Diagnosed and Ineligible for Intensive Chemotherapy

Start date: March 17, 2017
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of STAT inhibitor OPB-111077 when given together with decitabine and venetoclax in treating patients with acute myeloid leukemia that does not respond to treatment (refractory), has come back (relapsed), or is newly diagnosed and ineligible for intensive chemotherapy. STAT inhibitor OPB-111077 and decitabine may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as venetoclax, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving STAT inhibitor OPB-111077, decitabine, and venetoclax may work better in treating patients with acute myeloid leukemia compared to decitabine alone.

NCT ID: NCT02756572 Completed - Clinical trials for Myelodysplastic Syndrome

Early Allogeneic Hematopoietic Cell Transplantation in Treating Patients With Relapsed or Refractory High-Grade Myeloid Neoplasms

Start date: September 22, 2016
Phase: Phase 2
Study type: Interventional

This clinical trial studies how well early stem cell transplantation works in treating patients with high-grade myeloid neoplasms that has come back after a period of improvement or does not respond to treatment. Drugs used in chemotherapy, such as filgrastim, cladribine, cytarabine and mitoxantrone hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy before a donor peripheral blood cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. The donated stem cells may also replace the patient's immune cells and help destroy any remaining cancer cells. Early stem cell transplantation may result in more successful treatment for patients with high-grade myeloid neoplasms.

NCT ID: NCT02649764 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

Prexasertib (LY2606368), Cytarabine, and Fludarabine in Patients With Relapsed or Refractory Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndrome

Start date: May 4, 2016
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and determine the best dose of prexasertib (LY2606368) when given together with cytarabine and fludarabine in patients with acute myeloid leukemia or high-risk myelodysplastic syndrome that has returned after a period of improvement or no longer responds to treatment. Prexasertib (LY2606368) may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as cytarabine and fludarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving prexasertib (LY2606368) together with cytarabine and fludarabine may work better in treating patients with acute myeloid leukemia or myelodysplastic syndrome.