View clinical trials related to Recurrent Acute Myeloid Leukemia.
Filter by:This phase Ib/II trials studies the side effects of decitabine/cedazuridine (ASTX727) and venetoclax in combination with ivosidenib or enasidenib, and how well they work in treating patients with acute myeloid leukemia that has come back (relapsed) or does not respond to treatment (refractory). ASTX727 is the combination of a fixed dose of 2 drugs, cedazuridine and decitabine. Cedazuridine may slow down how fast decitabine is broken down by the body, and decitabine may block abnormal cells or cancer cells from growing. Venetoclax may stop the growth of cancer cells by blocking BCL-2, a protein needed for cancer cell survival. Enasidenib and ivosidenib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving decitabine/cedazuridine and venetoclax in combination with ivosidenib or enasidenib may help control acute myeloid leukemia.
This phase I/II trial studies the effect of DS-1594b with or without azacitidine, venetoclax, or mini-HCVD in treating patients with acute myeloid leukemia or acute lymphoblastic leukemia that has come back (recurrent) or not responded to treatment (refractory). Chemotherapy drugs, such as azacitidine, venetoclax, and mini-HCVD, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. DS-1594b may inhibit specific protein bindings that cause blood cancer. Giving DS-1594b, azacitidine, and venetoclax, or mini-HCVD may work better in treating patients with acute myeloid leukemia or acute lymphoblastic leukemia.
This phase II trial studies the possible benefits of venetoclax and ASTX727 in treating patients with acute myeloid leukemia that has come back (relapsed) or does not respond to treatment (refractory), or elderly patients with newly diagnosed acute myeloid leukemia who are not candidates for intensive chemotherapy. Venetoclax may help block the formation of growths that may become cancer. ASTX727 is the combination of a fixed dose of 2 drugs, cedazuridine and decitabine. Cedazuridine may slow down how fast decitabine is broken down by the body, and decitabine may block abnormal cells or cancer cells from growing. Giving venetoclax and ASTX727 may help to control the disease.
This phase Ib trial evaluates the best dose and effect of glasdegib in combination with venetoclax and decitabine, or gilteritinib, bosutinib, ivosidenib, or enasidenib in treating patients with acute myeloid leukemia that has come back (relapsed) after stem cell transplantation. Chemotherapy drugs, such as venetoclax and decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Glasdegib, bosutinib, ivosidenib, and enasidenib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Glasdegib inhibits the Sonic the Hedgehog gene. Venetoclax inhibits BCL-2 gene. Bosutinib is a tyrosine kinase inhibitor that inhibits BCR-ABL gene fusion. Ivosidenib inhibits isocitrate dehydrogenase-1 gene or IDH-1. Enasidenib inhibits isocitrate dehydrogenase-2 gene or IDH-2. This study involves an individualized approach that may allow doctors and researchers to more accurately predict which treatment plan works best for patients with relapsed acute myeloid leukemia.
This phase Ib trial investigates the side effects and best dose of pegcrisantaspase when given together with fludarabine and cytarabine for the treatment of patients with leukemia that has come back (relapsed) or has not responded to treatment (refractory). Pegcrisantaspase may block the growth of cancer cells. Chemotherapy drugs, such as fludarabine and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving pegcrisantaspase in combination with fludarabine and cytarabine may work better in treating patients with leukemia compared to the combination of fludarabine and cytarabine.
This phase II trial investigates how well CPX-351 and ivosidenib work in treating patients with acute myeloid leukemia or high-risk myelodysplastic syndrome that has IDH1 mutation. The safety of this drug combination will also be studied. IDH1 is a type of genetic mutation (change). Chemotherapy drugs, such as CPX-351, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Ivosidenib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. The purpose of this trial is to learn if CPX-351 in combination with ivosidenib can help to control IDH1-mutated acute myeloid leukemia or high-risk myelodysplastic syndrome.
This phase I/II trial investigates the side effects and best dose of alvocidib when given together with decitabine and venetoclax and to see how well it works in treating patients with acute myeloid leukemia that has come back (relapsed), has not responded to previous treatment (refractory), or as frontline treatment for patients unable to receive other therapies (unfit). Alvocidib, decitabine, and venetoclax may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This phase II trial investigates how well azacitidine, venetoclax, and trametinib work in treating patients with acute myeloid leukemia or higher-risk myelodysplastic syndrome that has come back (relapsed) or has not responded to treatment (refractory). Chemotherapy drugs, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Venetoclax and trametinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. The goal of this study is learn if the combination of azacitidine, venetoclax, and trametinib can help to control acute myeloid leukemia or myelodysplastic syndrome.
This phase Ib/II trial studies the side effects and best dose of magrolimab and venetoclax when given together with azacitidine and to see how well they work in treating patients with acute myeloid leukemia. Magrolimab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Chemotherapy drugs, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Venetoclax may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Giving magrolimab, azacitidine, and venetoclax may help to control the disease.
This phase I trial studies the best dose of total body irradiation when given with cladribine, cytarabine, filgrastim, and mitoxantrone (CLAG-M) or idarubicin, fludarabine, cytarabine and filgrastim (FLAG-Ida) chemotherapy reduced-intensity conditioning regimen before stem cell transplant in treating patients with acute myeloid leukemia, myelodysplastic syndrome, or chronic myelomonocytic leukemia that has come back (relapsed) or does not respond to treatment (refractory). Giving chemotherapy and total body irradiation before a donor peripheral blood stem cell transplant helps kill cancer cells in the body and helps make room in the patient's bone marrow for new blood-forming cells (stem cells) to grow. When the healthy stem cells from a donor are infused into a patient, they may help the patient's bone marrow make more healthy cells and platelets and may help destroy any remaining cancer cells. Sometimes the transplanted cells from a donor can attack the body's normal cells called graft versus host disease. Giving cyclophosphamide, cyclosporine, and mycophenolate mofetil after the transplant may stop this from happening.