Clinical Trials Logo

Recurrent Acute Myeloid Leukemia clinical trials

View clinical trials related to Recurrent Acute Myeloid Leukemia.

Filter by:

NCT ID: NCT03772925 Active, not recruiting - Clinical trials for Refractory Acute Myeloid Leukemia

Pevonedistat and Belinostat in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia or Myelodysplastic Syndrome

Start date: June 20, 2019
Phase: Phase 1
Study type: Interventional

This phase I trial studies side effects and best dose of pevonedistat and belinostat in treating patients with acute myeloid leukemia or myelodysplastic syndrome that has come back (relapsed) or does not respond to treatment (refractory). Chemotherapy drugs, such as pevonedistat and belinostat, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.

NCT ID: NCT03600155 Active, not recruiting - Clinical trials for Myelodysplastic Syndrome

Nivolumab and Ipilimumab After Donor Stem Cell Transplant in Treating Patients With High Risk Refractory or Relapsed Acute Myeloid Leukemia or Myelodysplastic Syndrome

Start date: October 11, 2018
Phase: Phase 1
Study type: Interventional

This phase Ib trial studies the side effects and best dose of nivolumab and ipilimumab after donor stem cell transplant in treating patients with high risk acute myeloid leukemia or myelodysplastic syndrome that does not respond to treatment or has come back. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.

NCT ID: NCT03404193 Active, not recruiting - Clinical trials for Acute Myeloid Leukemia

Venetoclax and Decitabine in Treating Participants With Relapsed/Refractory Acute Myeloid Leukemia or Relapsed High-Risk Myelodysplastic Syndrome

Start date: January 18, 2018
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well venetoclax and decitabine work in treating participants with acute myeloid leukemia that has come back or does not respond to treatment, or with high-risk myelodysplastic syndrome that has come back. Drugs used in chemotherapy, such as venetoclax and decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.

NCT ID: NCT03289910 Active, not recruiting - Clinical trials for Acute Myeloid Leukemia

Topotecan Hydrochloride and Carboplatin With or Without Veliparib in Treating Advanced Myeloproliferative Disorders and Acute Myeloid Leukemia or Chronic Myelomonocytic Leukemia

Start date: September 24, 2018
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well topotecan hydrochloride and carboplatin with or without veliparib work in treating patients with myeloproliferative disorders that have spread to other places in the body and usually cannot be cured or controlled with treatment (advanced), and acute myeloid leukemia or chronic myelomonocytic leukemia. Drugs used in chemotherapy, such as topotecan hydrochloride and carboplatin, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Veliparib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving topotecan hydrochloride, carboplatin, and veliparib may work better in treating patients with myeloproliferative disorders and acute myeloid leukemia or chronic myelomonocytic leukemia compared to topotecan hydrochloride and carboplatin alone.

NCT ID: NCT03247088 Active, not recruiting - Clinical trials for Refractory Acute Myeloid Leukemia

Sorafenib, Busulfan and Fludarabine in Treating Patients With Recurrent or Refractory Acute Myeloid Leukemia Undergoing Donor Stem Cell Transplant

Start date: July 30, 2017
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies the best dose of sorafenib when given together with busulfan and fludarabine in treating patients with acute myeloid leukemia that has come back or does not respond to treatment and who are undergoing donor stem cell transplant. Sorafenib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as busulfan and fludarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving sorafenib with busulfan and fludarabine may work better in treating patients with recurrent or refractory acute myeloid leukemia.

NCT ID: NCT03009240 Active, not recruiting - Clinical trials for Acute Myeloid Leukemia

Pevonedistat and Decitabine in Treating Patients With High Risk Acute Myeloid Leukemia

Start date: August 21, 2017
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of pevonedistat when given together with decitabine in treating patients with high risk acute myeloid leukemia. Pevonedistat and decitabine may stop the growth of cancer cells by blocking some of the enzymes need for cell growth.

NCT ID: NCT02890329 Active, not recruiting - Clinical trials for Secondary Acute Myeloid Leukemia

Ipilimumab and Decitabine in Treating Patients With Relapsed or Refractory Myelodysplastic Syndrome or Acute Myeloid Leukemia

Start date: September 5, 2017
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of ipilimumab when given together with decitabine in treating patients with myelodysplastic syndrome or acute myeloid leukemia that has returned after a period of improvement (relapsed) or does not respond to treatment (refractory). Immunotherapy with monoclonal antibodies, such as ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving ipilimumab and decitabine may work better in treating patients with relapsed or refractory myelodysplastic syndrome or acute myeloid leukemia.

NCT ID: NCT02861417 Active, not recruiting - Clinical trials for Myelodysplastic Syndrome

Busulfan, Fludarabine Phosphate, and Post-Transplant Cyclophosphamide in Treating Patients With Blood Cancer Undergoing Donor Stem Cell Transplant

Start date: August 5, 2016
Phase: Phase 2
Study type: Interventional

This phase II trial studies the side effect of busulfan, fludarabine phosphate, and post-transplant cyclophosphamide in treating patients with blood cancer undergoing donor stem cell transplant. Drugs used in chemotherapy, such as busulfan, fludarabine phosphate and cyclophosphamide work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy such as busulfan and fludarabine phosphate before a donor stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells (called graft-versus-host disease). Giving cyclophosphamide after the transplant may stop this from happening. Once the donated stem cells begin working, the patient's immune system may see the remaining cancer cells as not belonging in the patient's body and destroy them.

NCT ID: NCT02684162 Active, not recruiting - Clinical trials for Acute Myeloid Leukemia

Guadecitabine and Donor Lymphocyte Infusion in Treating Patients With Acute Myeloid Leukemia or Myelodysplastic Syndrome Relapsing After Allogeneic Stem Cell Transplant

Start date: June 22, 2016
Phase: Phase 2
Study type: Interventional

This phase IIa trial studies how well guadecitabine works in treating patients with acute myelogenous leukemia and myelodysplastic syndrome that has returned after a period of improvement after allogeneic stem cell transplant. Guadecitabine may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells (called graft-versus-host disease). Giving guadecitabine before the transplant may stop this from happening. Once the donated stem cells begin working, the patient's immune system may see the remaining cancer cells as not belonging in the patient's body and destroy them. Giving an infusion of the donor's white blood cells (donor lymphocyte infusion) may boost this effect.

NCT ID: NCT02530034 Active, not recruiting - Myelofibrosis Clinical Trials

Hu8F4 in Treating Patients With Advanced Hematologic Malignancies

Start date: January 31, 2019
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of anti-PR1/HLA-A2 monoclonal antibody Hu8F4 (Hu8F4) in treating patients with malignancies related to the blood (hematologic). Monoclonal antibodies, such as Hu8F4, may interfere with the ability of cancer cells to grow and spread.