View clinical trials related to Preleukemia.
Filter by:In this study, MGCD0103, a new anticancer drug under investigation, is given three times per week to elderly patients with previously untreated acute myelogenous leukemia/high risk myelodysplastic syndrome or adults with relapsed/refractory disease.
RATIONALE: Vaccines made from cancer cells may help the body build an effective immune response to kill abnormal cells. PURPOSE: This clinical trial is studying how well vaccine therapy works in treating patients with myelodysplastic syndromes (MDS).
RATIONALE: Drugs used in chemotherapy, such as cyclophosphamide, work in different ways to stop the growth of abnormal blood cells, either by killing the cells or by stopping them from dividing. Giving cyclophosphamide together with donor lymphocytes that have been treated in the laboratory may be an effective treatment for myelodysplastic syndromes or myeloproliferative disorders. PURPOSE: This clinical trial is studying the best dose of donor lymphocytes when given together with cyclophosphamide in treating patients with myelodysplastic syndromes or myeloproliferative disorders.
RATIONALE: Giving chemotherapy, natural killer cells, aldesleukin, and total-body irradiation before a donor umbilical cord blood stem cell transplant helps stop the growth of abnormal cells and cancer cells. It also helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving cyclosporine, mycophenolate mofetil, and methylprednisolone before and after transplant may stop this from happening. PURPOSE: This clinical trial is studying how well giving fludarabine and cyclophosphamide together with total-body irradiation followed by donor umbilical cord blood natural killer cells, aldesleukin, and umbilical cord blood transplant works in treating patients with refractory hematologic cancer or other diseases.
Non-randomized, open, dose ranging and dose scheduling study of ascending doses of KW-2449 in subjects with AML, ALL, MDS and CML.
RATIONALE: A donor stem cell transplant can lower the body's immune system, making it difficult to fight off infection. Giving antibiotics, such as moxifloxacin, may help prevent bacterial infections in patients who have recently undergone donor stem cell transplant. It is not yet known whether moxifloxacin is more effective than a placebo in preventing bacterial infections in patients who have recently undergone donor stem cell transplant. PURPOSE: This randomized phase III trial is studying moxifloxacin to see how well it works compared with a placebo in preventing bacterial infections in patients who have recently undergone donor stem cell transplant.
T-cell and B-cell depletion in allogeneic peripheral blood stem cell transplantation by using immunomagnetic negative and positive selection procedures Background: Removal of T-cells from the donor graft (T-cell depletion) offers the possibility for prevention of GVHD and subsequently less transplant related morbidity and mortality after allogeneic stem cell transplantation (SCT). There are several techniques to deplete T-cells from the stem cell grafts e.g. physical, immunological and combined physical / immunological separation methods. All these techniques result in a stem cell graft with sufficient CD34+ stem cells combined with an adequate depletion of T and B cells. CD34+ selected stem cell grafts are very pure and do not contain any additional cell populations. In contrast, CD3+/CD19+ depleted grafts still contain NK-cells, monocytes and dendritic cells that are part of the innate immune system. Theoretically,the presence of these cells may positively influence immunological reconstitution and the graft-versus-leukaemia (GVL) effect, respectively, resulting in improved outcome after SCT Objectives: To evaluate the differences in immunological reconstitution, transplant related mortality, disease-free survival and overall survival after T-cell depleted allogeneic SCT for haematological malignancies using either immunomagnetic CD34+ selection or immunomagnetic CD3+/CD19+ depletion using the CliniMACS system in approximately 270 consecutive patients. Additionally in this study in 20 consecutive patients the kinetics of NK-cel reconstitution and differences in NK-cell repertoire will be monitored. NK-cell mediated anti-tumor reactivity will be monitored in patients transplanted with and without NK-cells in the stem cell graft (CD3+/CD19+ depletion, versus CD34+ selection). Secondary objectives are to evaluate the clinical relevance of minor histocompatibility-specific cytotoxic T-cell responses for the GVL effect, the kinetics of NK-cell reconstitution and differences in NK-cell repertoire using the different T-cell depletion protocols. Design: Single center prospective randomised phase III study Population: Patients eligible for allogeneic SCT according to the standard criteria of our institution who will receive an allogeneic T- and B-cell depleted SCT with peripheral stem cells of an HLA-identical sibling donor or an HLA-identical unrelated voluntary (VUD) donor. Intervention: T-cell depletion will be conducted using two different techniques: either immunomagnetic CD34+ selection or immunomagnetic CD3+/CD19+ depletion. Endpoints: Primary endpoints are immunological reconstitution, relapse, disease free survival and overall survival. Secondary endpoints: NK-cell reconstitution and NK-cell mediated anti-tumour reactivity. Cytotoxic T-cell responses for the GVL effect. Estimated efforts and risks for participating patients: We don't expect any extra patient efforts or risks because T-cell depletion is a standard procedure in our clinic for many years. There is extensive experience with immunological T-cell depletion techniques. We hypothesize CD3+/CD19+ depletion will favour stem cell transplant outcome. Immunological and molecular biological studies will be performed on blood samples already obtained as part of the standard protocol.
This phase I trial is studying the side effects and best dose of SJG-136 in treating patients with relapsed or refractory acute leukemia, myelodysplastic syndromes, blastic phase chronic myelogenous leukemia, or chronic lymphocytic leukemia. Drugs used in chemotherapy, such as SJG-136, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing.
Rationale: Giving chemotherapy and total-body irradiation before a donor umbilical cord blood transplant helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from the donor's umbilical cord blood are injected into the patient's bone marrow they may help make stem cells, red blood cells, white blood cells, and platelets. Purpose: This phase I/II trial is studying the side effects of donor umbilical cord blood transplant when given directly into the bone marrow and to see how well it works in treating patients with hematologic cancer.
RATIONALE: Giving chemotherapy and total-body irradiation before a donor umbilical cord blood transplant helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the stem cells from a related or unrelated donor, that do not exactly match the patient's blood, are infused into the patient they may help the patient's bone marrow to make stem cells, red blood cells, white blood cells, and platelets. PURPOSE: This clinical trial is studying how well donor umbilical cord blood transplant works in treating patients with hematologic cancer.