Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT03851783
Other study ID # Pro00084784
Secondary ID
Status Completed
Phase N/A
First received
Last updated
Start date July 1, 2019
Est. completion date December 20, 2021

Study information

Verified date February 2022
Source University of Alberta
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Globally, approximately 7.7 million children per year die before the age of 5 years. Infectious diseases account for a large proportion of these deaths, with pneumonia being the leading cause of mortality (2.1 million deaths/year). Most deaths occur in resource-poor settings in Asia and Africa. Oxygen (O2) therapy is essential to support life in these patients. Large gaps remain in the case management of children presenting to African hospitals with respiratory distress, including essential supportive therapies such as supplemental oxygen. In resource-constrained settings, oxygen delivery systems can lead to measurable improvements in survival from childhood pneumonia. A multihospital effectiveness study in Papua New Guinea demonstrated a reduction in mortality from childhood pneumonia from 5.0% to 3.2% (35% reduction in mortality) after implementation of enhanced oxygen delivery system. The investigators propose to investigate a novel strategy for oxygen delivery that could be implemented in remote locations with minimal access to an electrical power supply: solar-powered oxygen (SPO2).


Description:

Clinical features of pneumonia in children include fever, respiratory distress, and hypoxemia. Respiratory distress is a useful clinical summary description with good inter-observer consistency among experienced medical practitioners. The following clinical signs may indicate increased work of breathing: sustained nasal flaring; indrawing (recession) of the bony structures of the chest wall (subcostal, intercostal, supraclavicular) on inspiration; tracheal tug; and deep breathing (acidotic or Kussmaul breathing). Respiratory distress is a sign that one or more serious pathological processes are at play: metabolic acidosis, fluid overload, acute lung injury, and/or co-morbid pneumonitis. Respiratory distress, together with alteration of consciousness, is a strong predictor of mortality in children with severe febrile illness in sub-Saharan Africa. The grim prognostic significance of respiratory distress applies to several disease states, irrespective of microbial etiology, including malaria as well as non-malaria febrile illness. Arterial hypoxemia in pneumonia results from several mechanisms: pulmonary arterial blood flow to consolidated lung resulting in an intrapulmonary shunt, intrapulmonary oxygen consumption, and ventilation-perfusion mismatch. Hypoxemia is a risk factor for mortality in pediatric pneumonia, and was associated with a 5-fold increased risk of death in studies from Kenya and Gambia. In one report from Nepal, the prevalence of hypoxemia (SpO2 < 90%) in 150 children with pneumonia was 39% overall, with increasing rates of hypoxemia across strata of pneumonia severity (100% of very severe, 80% of severe and 17% of pneumonia patients). General features of respiratory distress were associated with hypoxemia in this study, including chest indrawing, lethargy, grunting, nasal flaring, cyanosis, inability to breastfeed or drink. Oxygen is a lifesaving therapy for children with pneumonia and hypoxemia; however, challenges remain in oxygen delivery globally. Two main systems of oxygen delivery have been implemented and evaluated in resource-constrained settings, oxygen cylinders and oxygen concentrators. Oxygen cylinders are ready to use, simple to operate and do not require any electricity. However, cylinders are very costly and distribution and use is challenging. Oxygen concentrators have proven to be an effective means of delivering oxygen and are significantly less expensive that cylinders. However, oxygen concentrators require continuous and reliable electricity to operate which is not readily available in many regions, particularly in resource-limited settings where the majority of pneumonia deaths occur. In order to meet the demand for oxygen therapy in resource-limited settings, the investigators developed a novel strategy for oxygen delivery: solar-powered oxygen (SPO2). This system uses free inputs (sun and air) and could be implemented in remote locations with minimal access to an electrical power supply. Our group is the first to conduct rigorous scientific trials of SPO2. To date, the investigators have accumulated substantial clinical experience with SPO2, having treated >150 hypoxemic children, over several years, at two Ugandan hospitals. Compared to other oxygen delivery methods, SPO2 is superior. SPO2 is more reliable than oxygen concentrators connected to grid electricity, because it is not affected by frequent power outages. SPO2 utilizes a renewable, sustainable and freely available source of energy. SPO2 is more reliable than compressed oxygen cylinders, which are frequently out of stock in the public hospital system. SPO2 is more user-friendly and safer for nurses than cylinders, which require physical strength to change regulators on high-pressure cylinders. SPO2 is less wasteful than cylinders, which tend to leak through ill-fitting regulators under real-world conditions. The study is a multi-centre prospective evaluation of SPO2. The investigators will use a stepped-wedge cluster-randomized design to allow for robust scientific conclusions about the efficacy of SPO2. Importantly, demonstration of a mortality benefit of SPO2 will provide strong supportive evidence and could catalyse the widespread implementation of SPO2 in resource-limited settings across Africa and Asia.


Recruitment information / eligibility

Status Completed
Enrollment 2405
Est. completion date December 20, 2021
Est. primary completion date December 17, 2021
Accepts healthy volunteers No
Gender All
Age group 1 Month to 5 Years
Eligibility Inclusion Criteria: 1. Age under 5 years 2. Hypoxemia (SpO2<92%) based on non-invasive pulse oximetry 3. Hospital admission warranted based on clinician judgment Exclusion Criteria: 1. SpO2 =92% 2. Outpatient management 3. Denial of consent to participate in study

Study Design


Related Conditions & MeSH terms


Intervention

Device:
Solar-powered oxygen
Constant and reliable administration of oxygen, using solar panels to power an oxygen concentrator and deliver medical grade oxygen at 1-5L/min.

Locations

Country Name City State
Uganda Adumi Health Centre IV Adumi
Uganda Apac District Hospital Apac
Uganda Atiak Health Centre IV Atiak
Uganda Bugobero Health Centre IV Bugobero
Uganda Bukedea Health Centre IV Bukedea
Uganda Bumanya Health Centre IV Bumanya
Uganda Bundibugyo Hospital Bundibugyo
Uganda Kagadi Hospital Kagadi
Uganda Kalisizo Hospital Kalisizo
Uganda Kamuli General Hospital Kamuli
Uganda Kayunga District Hospital Kayunga
Uganda Kidera Health Centre IV Kidera
Uganda Kitagata Hospital Kitagata
Uganda Kitgum General Hospital Kitgum
Uganda Kyenjojo General Hospital Kyenjojo
Uganda Lalogi Health Centre IV Lalogi
Uganda Lyantonde Hospital Lyantonde
Uganda Gombe Hospital Mpigi
Uganda Muyembe Health Centre IV Muyembe
Uganda Sembabule Health Centre IV Sembabule

Sponsors (2)

Lead Sponsor Collaborator
University of Alberta Global Health Uganda LTD

Country where clinical trial is conducted

Uganda, 

References & Publications (2)

Hawkes MT, Conroy AL, Namasopo S, Bhargava R, Kain KC, Mian Q, Opoka RO. Solar-Powered Oxygen Delivery in Low-Resource Settings: A Randomized Clinical Noninferiority Trial. JAMA Pediatr. 2018 Jul 1;172(7):694-696. doi: 10.1001/jamapediatrics.2018.0228. — View Citation

Turnbull H, Conroy A, Opoka RO, Namasopo S, Kain KC, Hawkes M. Solar-powered oxygen delivery: proof of concept. Int J Tuberc Lung Dis. 2016 May;20(5):696-703. doi: 10.5588/ijtld.15.0796. — View Citation

Outcome

Type Measure Description Time frame Safety issue
Primary Mortality Mortality at 48 hours after admission 48 hours
Secondary In hospital mortality Mortality during any point of hospital admission Until end of hospitalization (usually 3 to 7 days)
Secondary Length of hospital stay Total length of hospital admission Until end of hospitalization (usually 3 to 7 days)
Secondary Oxygen saturation Measured oxygen saturations before and after administration of oxygen, using standard procedures Until end of hospitalization (usually 3 to 7 days)
Secondary Oxygen delivery system failure Number and duration of failures in any component of the oxygen delivery system, including solar panels, batteries, oxygen concentrator, and electrical components Until end of trial (24 months)
Secondary Total costs of implementing solar-powered oxygen delivery systems Total costs of implementing solar-powered oxygen delivery systems at twenty sites, including installation, servicing and maintenance Until end of trial (24 months)
See also
  Status Clinical Trial Phase
Active, not recruiting NCT04244474 - Effect of Vitamin D Supplementation on Improvement of Pneumonic Children Phase 1/Phase 2
Completed NCT05815264 - Clinical Trial of 23-valent Pneumococcal Polysaccharide Vaccine in Healthy Chinese Population Aged 2 Years and Above Phase 1
Recruiting NCT04589936 - Prone Position to Improve Oxygenation in COVID-19 Patients Outside Critical Care N/A
Completed NCT02905383 - The Effect of Exercise on Physical Function and Health in Older People After Discharge From Hospital N/A
Terminated NCT03944551 - Bubble Continuous Positive Airway Pressure for Children With Severe Pneumonia in Mali, Africa N/A
Completed NCT06210737 - A Study to Evaluate Persistence of Immunity of PCV13 in Healthy Population Aged 2 Months,7 Months-5 Years Phase 4
Terminated NCT04660084 - Impact of Molecular Testing on Improved Diagnosis, Treatment and Management of CAP N/A
Not yet recruiting NCT05649891 - Checklists Resuscitation Emergency Department N/A
Withdrawn NCT05702788 - Efficacy and Safety of Jaktinib in Participants With Severe Novel Coronavirus Pneumonia(COVID-19) Phase 2
Not yet recruiting NCT04171674 - Pharmacokinetics of High-dose Ceftobiprole in Community-acquired Pneumonia Under Mechanical Ventilation. N/A
Active, not recruiting NCT03140163 - Screening for Pneumonia: A Comparison of Ultra Low Dose Chest CT [ULD-CT] and Conventional Chest Radiography [CXR] N/A
Completed NCT02864420 - Hospitalization at Home: The Acute Care Home Hospital Program for Adults N/A
Completed NCT02638649 - Prehospital Use of Ultrasound in Undifferentiated Shortness of Breath
Recruiting NCT02515565 - Physiotherapy in Patients Hospitalized Due to Pneumonia. N/A
Completed NCT02105298 - Effect of Volume and Type of Fluid on Postoperative Incidence of Respiratory Complications and Outcome (CRC-Study) N/A
Completed NCT01399723 - Amoxicillin Versus Benzyl Penicillin for Treatment of Children Hospitalised With Severe Pneumonia Phase 3
Completed NCT01416519 - Physiotherapy Technique Decreases Respiratory Complications After Cardiac Operation N/A
Completed NCT01446926 - Study of Investigational Pneumococcal Vaccine in Healthy Adults, Toddlers and Infants Phase 1
Terminated NCT02358642 - Drug to Prevent Pneumonia in the Tube Fed Phase 4
Completed NCT01476995 - Prognostic Indicators as Provided by the EPIC ClearView N/A