Clinical Trials Logo

Clinical Trial Summary

Pneumonia is the most frequent infection in critically ill patients and remains a significant challenge to intensivists world-wide due to persisting high mortality and morbidity. Compelling evidence suggests that appropriate antibiotic therapy remains the most important intervention to improve patients' outcome, including the administration of a suitable molecule at an optimized dosage regimen. A vast array of pathophysiological changes can occur in critically ill patients that can complicate antibiotic dosing. Knowledge of the pharmacokinetic and pharmacodynamic properties of the antibiotics used for the management of critically ill patients is essential for selecting the antibiotic dosing regimens, which will optimize patient outcomes. Changes in volume of distribution (Vd) and clearance (CL) of antibiotics have been noted in these patients, which may affect the antibiotic concentration at the target site. It follows that the pharmacodynamic parameters that determine antibiotic efficacy, which can vary between antibiotic classes, may also be affected. Optimization of these parameters is necessary to maximize the rate of response through patient recovery and minimized antibiotic resistance.

In a multicenter observational study in critically ill patients with normal plasma renal indices at admission, about 65% of patients manifested augmented creatinine clearance on at least one occasion in the first seven study days. Augmented creatinine clearance may significantly impact drug pharmacokinetics for a variety of renally eliminated pharmaceuticals (such as low-molecular weight heparins, aminoglycosides, glycopeptides, and β-lactams), leading to subtherapeutic concentrations and potentially adverse clinical outcomes. Currently little data exist that describe the consequences of augmented creatinine clearance on antibiotics PK.

Ceftaroline (600 mg bid) is a cephalosporin with expanded gram-positive activity, including MRSA and penicillin-resistant streptococcus, which was approved by the US Food and Drug Administration (FDA) on October 29, 2010 for the treatment of acute bacterial SSSIs and community-acquired bacterial pneumonia. Ceftaroline showed also good activity against some of the common gram-negative respiratory pathogens (eg, Haemophilus influenzae, Moraxella catarrhalis, Neisseria meningitidis, and Pasteurella multocida). However, it does not display clinically relevant activity against Pseudomonas aeruginosa, Stenotrophomonas maltophilia, or Acinetobacter baumannii. Ceftaroline also lacks activity against gram-negative organisms with extended-spectrum β-lactamases. Importantly, because ceftaroline appears to induce AmpC β-lactamases despite MIC values in susceptible range, ittheoretically should be avoided in gram-negative bacteria known to harbor inducible AmpC β-lactamases (eg, Serratia, Proteus, Citrobacter, Morganella, Enterobacter, Providencia, and P. aeruginosa). In patients, ceftaroline is given as a prodrug, ceftaroline fosamil. After intravenous administration, the prodrug is rapidly transformed by plasma phosphatase enzymes to its bioactive metabolite. The pharmacokinetics of ceftaroline has been evaluated in single and multiple dose studies in healthy volunteers, in subjects with various degrees of renal impairment and in healthy elderly subjects. The volume of distribution is equal to 20.3 L, which corresponds to extracellular fluid volume. The protein binding is low (20%). The main route of elimination is via renal excretion, with a clearance estimated to160 mL/min close to the creatinine clearance. The elimination half-live is 2.6 h in adults with normal renal function. Unfortunately, no PK study has been performed in infected critically ill patients with augmented creatinine clearance. The best PK-PD index predicting drug efficacy is %Time>CMI. A bacteriostatic effect is achieved when free drug concentrations exceed the MIC for 30 to 40% of the dose administration interval (30 to 40%T>MIC). Near maximum organism kill is achieved at 50 to 60%T>MIC (30%T>MIC for Staphylococcus aureus).

This project aims to characterize ceftaroline PK in patients with early-onset pneumonia and augmented creatinine clearance. The choice of ceftaroline is justified by its spectrum suitable for micro-organisms commonly encountered in early onset pneumonia, including methicillin-resistant Staphylococcus aureus. Secondary main objective is to predict the probably of reaching PK-PD targets using Monte Carlo simulations under various scenario in order to identify optimal ceftaroline administration schemes in critical care patients with various degrees of renal impairment.


Clinical Trial Description

n/a


Study Design


Related Conditions & MeSH terms


NCT number NCT03025841
Study type Interventional
Source Poitiers University Hospital
Contact
Status Completed
Phase Phase 1
Start date December 2016
Completion date June 2018

See also
  Status Clinical Trial Phase
Active, not recruiting NCT04244474 - Effect of Vitamin D Supplementation on Improvement of Pneumonic Children Phase 1/Phase 2
Completed NCT05815264 - Clinical Trial of 23-valent Pneumococcal Polysaccharide Vaccine in Healthy Chinese Population Aged 2 Years and Above Phase 1
Recruiting NCT04589936 - Prone Position to Improve Oxygenation in COVID-19 Patients Outside Critical Care N/A
Completed NCT02905383 - The Effect of Exercise on Physical Function and Health in Older People After Discharge From Hospital N/A
Terminated NCT03944551 - Bubble Continuous Positive Airway Pressure for Children With Severe Pneumonia in Mali, Africa N/A
Completed NCT06210737 - A Study to Evaluate Persistence of Immunity of PCV13 in Healthy Population Aged 2 Months,7 Months-5 Years Phase 4
Terminated NCT04660084 - Impact of Molecular Testing on Improved Diagnosis, Treatment and Management of CAP N/A
Not yet recruiting NCT05649891 - Checklists Resuscitation Emergency Department N/A
Withdrawn NCT05702788 - Efficacy and Safety of Jaktinib in Participants With Severe Novel Coronavirus Pneumonia(COVID-19) Phase 2
Not yet recruiting NCT04171674 - Pharmacokinetics of High-dose Ceftobiprole in Community-acquired Pneumonia Under Mechanical Ventilation. N/A
Active, not recruiting NCT03140163 - Screening for Pneumonia: A Comparison of Ultra Low Dose Chest CT [ULD-CT] and Conventional Chest Radiography [CXR] N/A
Completed NCT02864420 - Hospitalization at Home: The Acute Care Home Hospital Program for Adults N/A
Completed NCT02638649 - Prehospital Use of Ultrasound in Undifferentiated Shortness of Breath
Recruiting NCT02515565 - Physiotherapy in Patients Hospitalized Due to Pneumonia. N/A
Completed NCT02105298 - Effect of Volume and Type of Fluid on Postoperative Incidence of Respiratory Complications and Outcome (CRC-Study) N/A
Completed NCT01446926 - Study of Investigational Pneumococcal Vaccine in Healthy Adults, Toddlers and Infants Phase 1
Completed NCT01399723 - Amoxicillin Versus Benzyl Penicillin for Treatment of Children Hospitalised With Severe Pneumonia Phase 3
Completed NCT01416519 - Physiotherapy Technique Decreases Respiratory Complications After Cardiac Operation N/A
Completed NCT01416506 - Community-Acquired Pneumonia (CAP) Surveillance N/A
Completed NCT01476995 - Prognostic Indicators as Provided by the EPIC ClearView N/A