View clinical trials related to Plasmacytoma.
Filter by:RATIONALE: Drugs used in chemotherapy, such as doxorubicin hydrochloride liposome, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Bortezomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving doxorubicin hydrochloride liposome together with bortezomib may kill more cancer cells. PURPOSE: This phase I/II trial is studying the side effects and best dose of bortezomib when given together with doxorubicin hydrochloride liposome and to see how well they work in treating patients with refractory hematologic cancer or malignant solid tumor or metastatic breast cancer.
RATIONALE: Drugs used in chemotherapy, such as arsenic trioxide, dexamethasone, and ascorbic acid, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. Sometimes when chemotherapy is given, it does not stop the growth of cancer cells. The cancer is said to be resistant to chemotherapy. Giving arsenic trioxide together with chemotherapy may reduce drug resistance and allow the cancer cells to be killed. Thalidomide may stop the growth of multiple myeloma by blocking blood flow to the cancer. Giving arsenic trioxide together with thalidomide, dexamethasone, and ascorbic acid may kill more cancer cells. PURPOSE: This phase II trial is studying how well giving arsenic trioxide together with thalidomide, dexamethasone, and ascorbic acid works in treating patients with relapsed or refractory multiple myeloma.
RATIONALE: When irradiated lymphocytes from a donor are infused into the patient they may help the patient's immune system kill cancer cells. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Giving irradiated donor lymphocytes together with rituximab may kill more cancer cells. PURPOSE: This clinical trial is studying the side effects and how well giving irradiated donor lymphocytes together with rituximab works in treating patients with relapsed or refractory lymphoproliferative disease.
RATIONALE: Giving chemotherapy before a donor bone marrow transplant helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving cyclophosphamide, mycophenolate mofetil, or tacrolimus after transplant may stop this from happening. PURPOSE: This clinical trial is studying how well giving combination chemotherapy together with tacrolimus and mycophenolate mofetil works in treating patients who are undergoing a donor bone marrow transplant for hematologic cancer.
RATIONALE: Giving low doses of chemotherapy, such as fludarabine and cyclophosphamide, and radiation therapy before a donor bone marrow transplant helps stop the growth of cancer cells. Giving chemotherapy or radiation therapy before or after transplant also stops the patient's immune system from rejecting the donor's bone marrow stem cells. The donated stem cells may replace the patient's immune system cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving tacrolimus and mycophenolate mofetil after the transplant may stop this from happening. PURPOSE: This phase II trial is studying how well giving fludarabine and cyclophosphamide together with total-body irradiation works in treating patients who are undergoing a donor bone marrow transplant for hematologic cancer.
RATIONALE: Chemoprotective agents may protect normal cells from the side effects of chemotherapy. Ice chips or saline mouth rinse may lessen the severity or help prevent symptoms of mucositis or mouth sores in patients receiving melphalan and autologous stem cell transplant for multiple myeloma. It is not yet known whether ice chips are more effective than saline mouth rinse in reducing or preventing mucositis. PURPOSE: This randomized phase III trial is studying ice chips to see how well they work compared to saline mouth rinse in reducing or preventing mucositis in patients receiving melphalan and autologous stem cell transplant for multiple myeloma.
RATIONALE: Drugs used in chemotherapy, such as arsenic trioxide and dexamethasone, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Thalidomide may stop the growth of multiple myeloma by blocking blood flow to the cancer. Giving arsenic trioxide together with ascorbic acid, dexamethasone, and thalidomide may kill more cancer cells. PURPOSE: This phase II trial is studying how well giving arsenic trioxide together with ascorbic acid, dexamethasone, and thalidomide work in treating patients with multiple myeloma.
This clinical trial studies the side effects and best dose of giving fludarabine and total-body irradiation (TBI) together followed by a donor stem cell transplant and cyclosporine and mycophenolate mofetil in treating human immunodeficiency virus (HIV)-positive patients with or without cancer. Giving low doses of chemotherapy, such as fludarabine, and TBI before a donor bone marrow or peripheral blood stem cell transplant helps stop the growth of cancer or abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine (CSP) and mycophenolate mofetil (MMF) after the transplant may stop this from happening.
RATIONALE: Alemtuzumab, tacrolimus, and methylprednisolone may be an effective treatment for graft-versus-host disease caused by a donor stem cell transplant. PURPOSE: This phase II trial is studying how well giving alemtuzumab together with tacrolimus and methylprednisolone works in treating acute graft-versus-host disease in patients who have undergone donor stem cell transplant.
RATIONALE: Diagnostic procedures, such as magnetic resonance imaging (MRI) and fludeoxyglucose F 18 positron emission tomography (^18FDG-PET) may help diagnose solitary plasmacytoma. PURPOSE: This clinical trial is studying MRI and ^18FDG-PET to see how well they work in diagnosing patients with solitary plasmacytoma.