Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT02359825
Other study ID # 191655
Secondary ID
Status Recruiting
Phase Phase 1
First received
Last updated
Start date September 2015
Est. completion date July 2026

Study information

Verified date December 2023
Source Vanderbilt University Medical Center
Contact Wesley Thayer, MD
Phone 615-936-0160
Email wesley.thayer@vanderbilt.edu
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Current strategies for peripheral nerve repair are severely limited. Even with current techniques, it can take months for regenerating axons to reach denervated target tissues when injuries are proximally located. This inability to rapidly restore the loss of function after axonal injury continues to produce poor clinical outcomes. The investigators propose testing the efficacy and safety of a combination therapy: polyethylene glycol (PEG) assisted axonal fusion technique to repair peripheral nerve injuries in humans.


Description:

Our own preclinical animal studies have been designed to take advantage of PEG. We have used the fusogenic properties of PEG and this has allowed us to demonstrate a rapid and decisive electrophysiological recovery of either crushed or completely severed sciatic nerves in a commonly accepted mammalian model for peripheral nerve injury (Bittner et al JSR 2012). Recently, we modified previously published mammalian techniques. Our goal was to eliminate laboratory solutions that have not been approved for use in humans and replace them with readily available reagents commonly used in clinical applications. PEG is commercially available in many molecular formulations and our earlier experiments with PEG having a molecular weight of 2 kD. Unfortunately, this molecular weight is not approved by the Food and Drug Administration (FDA) for human usage. In our more recent preclinical studies, we have demonstrated that PEG 3.35 kD, the main ingredient in the commonly used cathartic known as MiraLAX© (MERCK; Whitehouse Station, NJ), actually generates superior fusion over PEG 2KD in a cut nerve model. Thus the clinical trial that forms the basis of this proposal was developed with the FDA approved 3.35 kD PEG and these other two FDA approved solutions. Additional studies in our complex nerve injury model have also demonstrated that the repair does not have to be performed immediately after nerve injury. Epineural repair with PEG 3.35 kD treatment can be performed up to 24hrs after injury and postoperative CAPs are obtained in all PEG 3.35 kD treated animals (n=3, data not shown). The remarkable finding is that in the 24-hour injury model, PEG significantly improves behavioral outcome measured at 72 hours postoperatively. Based on the published reports and our own in vivo studies, we demonstrate that PEG based repair can restore CAPs immediately and improve functional recovery significantly post injury. These preclinical findings suggest that we can offer a novel therapy to test in humans who have experienced complete transection of a peripheral nerve. Patient risk is minimized as we have optimized the PEG facilitated fusion technique to utilize commonly used FDA approved drugs, solutions and electrolytes to augment standard neurorrhaphy techniques. The experimental protocol entails 100% transection injury to a peripheral nerve followed by a standard neurorrhaphy. The repair is then irrigated gently with PEG for two minutes and sterile water in standard fashion is used to wash away the PEG. The most likely scenarios, that explain rapid compound action potential (CAP) restoration, are the rapid restoration of cytoplasmic flow within the nerves, the rapid ability of membranes to depolarize and possibly the prevention of Wallerian degeneration.


Recruitment information / eligibility

Status Recruiting
Enrollment 18
Est. completion date July 2026
Est. primary completion date July 2025
Accepts healthy volunteers No
Gender All
Age group 18 Years to 75 Years
Eligibility Inclusion Criteria: - Diagnosis of a Sunderland Class 5 traumatic neuropathy (transection injury) of a digital nerve in the upper extremity - candidates for immediate operative repair (Arm 1); - injury proceeding repair no longer than 72 hours; and - repair within 48 hours of injury that require nerve grafting; - N0 significant medical comorbidities precluding immediate repair; - willing to comply with all aspects of the treatment and evaluation schedule over a 12 months period. We plan to include subjects who have peripheral nerve injuries that are complicated by significant vascular or orthopedic damage. Exclusion Criteria: - Patients will be excluded from enrollment if their injuries exhibit gross contamination, in circumstances where soft tissue coverage is inadequate, or when staged repair is planned. - We will also exclude patients that are diabetic, have been diagnosed with a neuromuscular disease, or are undergoing chemotherapy, radiation therapy, or other treatments known to affect the growth of the neural and vascular system. - We will exclude all patients currently enrolled in another investigational study or those who are unlikely to complete the normal regime of occupational therapy. Individuals will be excluded from participation if their time of injury falls outside study parameters.

Study Design


Related Conditions & MeSH terms


Intervention

Drug:
Polyethylene glycol (PEG)
For the control groups, epineural repair or interposition grafting will be undertaken in the standard end-to-end fashion using interrupted nylon suture after irrigation of the wound with normal saline as deemed necessary by the operating surgeon. For the experimental group, the nerve(s) will be repaired using standard suture neurorrhaphy techniques and a 149.25 mM (50%) solution of PEG 3.35 kD in sterile water will then be irrigated onto the neurorrhaphy site for one minute. Following this, the approximated nerve ends will be irrigated with sterile water gently for 2 minutes. All wounds will be closed in the fashion deemed appropriate by the operating surgeon.

Locations

Country Name City State
United States Vanderbilt University Medical Center Nashville Tennessee

Sponsors (1)

Lead Sponsor Collaborator
Vanderbilt University

Country where clinical trial is conducted

United States, 

Outcome

Type Measure Description Time frame Safety issue
Primary return of nerve function as measured by (Medical Research Council Classificatoin (MRCC) Medical Research Council Classificatoin (MRCC) 12 months
See also
  Status Clinical Trial Phase
Not yet recruiting NCT02865317 - Cortical Effects of Peripheral Nerve Injury At Birth N/A
Recruiting NCT01554722 - Needle Nerve Contact in Ultrasound Guided Femoral Block N/A
Recruiting NCT06071936 - Efficacy and Tolerability of AP707 in Patients With Chronic Pain Due to Traumatic or Post-operative Peripheral Neuropathy Phase 3
Recruiting NCT06071988 - Long Term Efficacy and Tolerability of AP707 in Patients With Chronic Pain Due to Traumatic or Post-operative Peripheral Neuropathy Phase 3
Recruiting NCT05541250 - Safety and Efficacy of Autologous Human Schwann Cell (ahSC) Augmentation in Severe Peripheral Nerve Injury (PNI) Phase 1
Recruiting NCT06209632 - Mirror Therapy Combined With Contralaterally Controlled Functional Electrical Stimulation for Peripheral Nerve Injury N/A
Completed NCT01116362 - Comparing Primary With Secondary Repair of Based on Electrodiagnostic Assessment and Clinical Examination Phase 2
Withdrawn NCT04270019 - Polyethylene Glycol to Improve Sensation Following Digital Nerve Laceration Phase 1/Phase 2
Terminated NCT01088256 - Efficacy of Etoricoxib on Peripheral Hyperalgesia Phase 2
Completed NCT01302275 - Oxcarbazepine for the Treatment of Chronic Peripheral Neuropathic Pain Phase 4
Completed NCT02228928 - Study of Capsaicin Patch for the Management of Peripheral Neuropathic Pain Phase 1/Phase 2
Withdrawn NCT00950391 - Enhancement of Functional Recovery After Peripheral Nerve Injury With Tacrolimus Phase 1/Phase 2
Completed NCT00953277 - Study of Nerve Reconstruction Using AVANCE in Subjects Who Undergo Robotic Assisted Prostatectomy for Treatment of Prostate Cancer Phase 4
Not yet recruiting NCT06003166 - 4-AP Peripheral Nerve Crossover Trial Phase 3
Not yet recruiting NCT02666456 - The Influence of Sensory Phenotype on the Risk of Developing Neuropathic Pain N/A
Not yet recruiting NCT02352649 - Safety and Efficacy Study of Neovasculgen (Pl-VEGF165) Gene Therapy in Patients With Peripheral Nerve Injury Phase 1/Phase 2
Terminated NCT02034461 - Micro-Electrodes Implanted in a Human Nerve N/A
Completed NCT01596491 - Study of Possible Changes in QST After Application of Capsaicin on Patients With Peripheral Neuropathic Pain N/A
Recruiting NCT03147313 - Extracorporal Shock Wave Treatment to Improve Nerve Regeneration N/A