Clinical Trials Logo

Clinical Trial Summary

Lower limb amputation is common in the United States, with approximately 150,000 amputations annually. Most individuals walking with a prosthesis demonstrate asymmetrical loading-i.e., they favor the amputated side by placing more weight and increased ground reaction forces through the intact limb-which likely contributes to increased metabolic cost of walking. Lack of adequate muscular strength in the lower limb to attenuate these forces places increased stress on the joints, which may be displaced proximally, and may play a role in reported knee and hip pain in the intact limb. Lower limb muscle weakness following amputation has been well documented. Increasing quadriceps strength is important after an amputation because it is positively correlated with gait speed. Gait speed may also be associated with successful community mobility, which leads to improved quality of life following amputation. Individuals with amputation who resume an active lifestyle are able to maintain strength. However, these individuals represent a minority of persons with lower limb amputation; most individuals report more barriers than motivators to adopt an active lifestyle. Ischemic conditioning (IC) may strengthen leg muscles and reduce the metabolic cost of activity after amputation. In IC, the limb is exposed to brief, repeated bouts of ischemia (reduced blood flow) immediately followed by reperfusion. IC has been shown to improve muscle performance in healthy and diseased populations. IC has also been used more recently in patients with peripheral artery disease (PAD) as an intervention to improve function, such as walking ability. Acute exposure to IC increases muscle strength and activation, both in healthy, active individuals and in those with severe neuromuscular dysfunction, such as stroke survivors. IC also attenuates muscular fatigue. Increased fatigue resistance at submaximal contraction levels following IC may be due to increased neural activation of skeletal muscle. Changes in neural activation of muscle may be particularly beneficial during cortical reorganization after amputation. Reduced quadriceps fatigue during submaximal activities may also drive changes in gait kinematics, such as increased knee flexion during loading and mid-stance. Exposure to IC may also increase the oxidative properties of skeletal muscle, offering a direct pathway to reduce metabolic cost. Therefore, IC may lead to cellular changes that lower the metabolic cost of activity. The primary aim of this study is to quantify the benefits of acute and chronic IC on quadriceps strength and walking economy in individuals with PAD and history of lower limb amputation.


Clinical Trial Description

n/a


Study Design


Related Conditions & MeSH terms


NCT number NCT04937179
Study type Interventional
Source University of Illinois at Chicago
Contact Lindsay Slater, PhD
Phone 3123558965
Email slaterlv@uic.edu
Status Recruiting
Phase N/A
Start date July 1, 2022
Completion date December 31, 2023

See also
  Status Clinical Trial Phase
Recruiting NCT06032065 - SMART Exercise for PAD Phase 3
Active, not recruiting NCT03987061 - MOTIV Bioresorbable Scaffold in BTK Artery Disease N/A
Recruiting NCT03506633 - Impacts of Mitochondrial-targeted Antioxidant on Peripheral Artery Disease Patients N/A
Active, not recruiting NCT03506646 - Dietary Nitrate Supplementation and Thermoregulation N/A
Active, not recruiting NCT04677725 - NEtwork to Control ATherothrombosis (NEAT Registry)
Recruiting NCT05961943 - RESPONSE-2-PAD to Reduce Sedentary Time in Peripheral Arterial Disease Patients N/A
Recruiting NCT06047002 - Personalised Antiplatelet Therapy for Patients With Symptomatic Peripheral Arterial Disease
Completed NCT03185052 - Feasibility of Outpatient Care After Manual Compression in Patients Treated for Peripheral Arterial Disease by Endovascular Technique With 5F Sheath Femoral Approach N/A
Recruiting NCT05992896 - A Study of Loco-Regional Liposomal Bupivacaine Injection Phase 4
Completed NCT04635501 - AbsorbaSeal (ABS 5.6.7) Vascular Closure Device Trial N/A
Recruiting NCT04584632 - The Efemoral Vascular Scaffold System (EVSS) for the Treatment of Patients With Symptomatic Peripheral Vascular Disease From Stenosis or Occlusion of the Femoropopliteal Artery N/A
Withdrawn NCT03994185 - The Merit WRAPSODY™ Endovascular Stent Graft for Treatment of Iliac Artery Occlusive Disease N/A
Withdrawn NCT03538392 - Serranator® Alto Post Market Clinical Follow Up (PMCF) Study
Recruiting NCT02915796 - Autologous CD133(+) Cells as an Adjuvant to Below the Knee Percutaneous Transluminal Angioplasty Phase 1
Active, not recruiting NCT02900924 - Observational Study to Evaluate the BioMimics 3D Stent System: MIMICS-3D
Completed NCT02901847 - To Evaluate the Introduction of a Public Health Approach to Peripheral Arterial Disease (PAD) Using National Centre for Sport and Exercise Medicine Facilities. N/A
Not yet recruiting NCT02455726 - Magnesium Oral Supplementation to Reduce Pain Inpatients With Severe Peripheral Arterial Occlusive Disease N/A
Not yet recruiting NCT02387450 - Reduced Cardiovascular Morbi-mortality by Sildenafil in Patients With Arterial Claudication Phase 2/Phase 3
Withdrawn NCT02126540 - Trial of Pantheris System, an Atherectomy Device That Provides Imaging While Removing Plaque in Lower Extremity Arteries N/A
Completed NCT02022423 - Physical Activity Daily - An Internet-Based Walking Program for Patients With Peripheral Arterial Disease N/A