Periodontitis Clinical Trial
Official title:
Supplementation With L-ornithine Increases Representation Density of CD68+ and CD163+ Macrophages in Human Periodontitis Gingiva and Can Modulate Macrophages Phenotypes. Randomized Controlled Pilot Trial
Verified date | September 2021 |
Source | Ukrainian Medical Stomatological Academy |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
The aim of the study was to investigate whether oral administration of L-arginine or L-ornithine could modulate local representation density and ratio of macrophages in periodontitis-affected gingiva by using immunohistochemical detection of CD68+ and CD163+ macrophages in biopsies of the gingiva. The null hypothesis tested was that L-arginine and L-ornithine have no influences on CD68+ and CD163+ macrophages densities when supplementing the treatment of periodontitis. Materials and methods. 75 individuals with a diagnosis of generalized periodontitis at stages II-III and grade B (38 women and 37 men, 51% and 49%, respectively) were included in the study. Periodontitis was diagnosed by using the criteria of the Classification of Periodontal and Peri-Implant Diseases and Conditions 2017. 25 patients received scaling and root planing only; 25 patients additionally received L-arginine, and 25 - L-ornithine, according to instructions available in Ukraine. For the immunohistochemical study of paraffin-embedded sections, the gingival biopsy was taken from 5 selected patients per group before treatment and after 1 month. CD68+ (cluster of differentiation 68 positive) and CD163+ cells served as a morphological equivalent of M1, M2 macrophages subpopulations, and their densities were calculated per 10000 μm2. Statistical analysis was performed by adequate power methods.
Status | Completed |
Enrollment | 75 |
Est. completion date | November 1, 2018 |
Est. primary completion date | October 2, 2018 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 25 Years to 54 Years |
Eligibility | Inclusion Criteria: - Presence of periodontitis - Good general health - At least 19 remaining teeth - Written informed consent forms Exclusion Criteria: - Antibiotics or anti-inflammatory medications use within the preceding 3 months - Periodontal therapy within the previous 6 months - Purulent exudation from periodontal pockets - Pregnancy and breastfeeding - Presence of severe, uncontrolled (decompensated) diseases of the internal organs, or neuropsychiatric disorders - Presence of other conditions that determined the inability of the patient to understand the nature and possible consequences of the study |
Country | Name | City | State |
---|---|---|---|
Ukraine | Ukrainian Medical Stomatological Academy | Poltava |
Lead Sponsor | Collaborator |
---|---|
Ukrainian Medical Stomatological Academy |
Ukraine,
Allam JP, Duan Y, Heinemann F, Winter J, Götz W, Deschner J, Wenghoefer M, Bieber T, Jepsen S, Novak N. IL-23-producing CD68(+) macrophage-like cells predominate within an IL-17-polarized infiltrate in chronic periodontitis lesions. J Clin Periodontol. 2011 Oct;38(10):879-86. doi: 10.1111/j.1600-051X.2011.01752.x. Epub 2011 Aug 31. — View Citation
Almubarak A, Tanagala KKK, Papapanou PN, Lalla E, Momen-Heravi F. Disruption of Monocyte and Macrophage Homeostasis in Periodontitis. Front Immunol. 2020 Feb 26;11:330. doi: 10.3389/fimmu.2020.00330. eCollection 2020. — View Citation
Angajala A, Lim S, Phillips JB, Kim JH, Yates C, You Z, Tan M. Diverse Roles of Mitochondria in Immune Responses: Novel Insights Into Immuno-Metabolism. Front Immunol. 2018 Jul 12;9:1605. doi: 10.3389/fimmu.2018.01605. eCollection 2018. Review. — View Citation
Campion D, Giovo I, Ponzo P, Saracco GM, Balzola F, Alessandria C. Dietary approach and gut microbiota modulation for chronic hepatic encephalopathy in cirrhosis. World J Hepatol. 2019 Jun 27;11(6):489-512. doi: 10.4254/wjh.v11.i6.489. Review. — View Citation
Fabriek BO, Dijkstra CD, van den Berg TK. The macrophage scavenger receptor CD163. Immunobiology. 2005;210(2-4):153-60. Review. — View Citation
Garaicoa-Pazmino C, Fretwurst T, Squarize CH, Berglundh T, Giannobile WV, Larsson L, Castilho RM. Characterization of macrophage polarization in periodontal disease. J Clin Periodontol. 2019 Aug;46(8):830-839. doi: 10.1111/jcpe.13156. Epub 2019 Jun 25. — View Citation
Gordon S, Plüddemann A, Martinez Estrada F. Macrophage heterogeneity in tissues: phenotypic diversity and functions. Immunol Rev. 2014 Nov;262(1):36-55. doi: 10.1111/imr.12223. Review. — View Citation
Hardbower DM, Asim M, Luis PB, Singh K, Barry DP, Yang C, Steeves MA, Cleveland JL, Schneider C, Piazuelo MB, Gobert AP, Wilson KT. Ornithine decarboxylase regulates M1 macrophage activation and mucosal inflammation via histone modifications. Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):E751-E760. doi: 10.1073/pnas.1614958114. Epub 2017 Jan 17. — View Citation
Ito N, Seki S, Ueda F. Effects of Composite Supplement Containing Collagen Peptide and Ornithine on Skin Conditions and Plasma IGF-1 Levels-A Randomized, Double-Blind, Placebo-Controlled Trial. Mar Drugs. 2018 Dec 3;16(12). pii: E482. doi: 10.3390/md16120482. — View Citation
Kedia-Mehta N, Finlay DK. Competition for nutrients and its role in controlling immune responses. Nat Commun. 2019 May 9;10(1):2123. doi: 10.1038/s41467-019-10015-4. Review. — View Citation
Liao SY, Showalter MR, Linderholm AL, Franzi L, Kivler C, Li Y, Sa MR, Kons ZA, Fiehn O, Qi L, Zeki AA, Kenyon NJ. l-Arginine supplementation in severe asthma. JCI Insight. 2020 Jul 9;5(13). pii: 137777. doi: 10.1172/jci.insight.137777. — View Citation
Moinard C, Caldefie F, Walrand S, Felgines C, Vasson MP, Cynober L. Involvement of glutamine, arginine, and polyamines in the action of ornithine alpha-ketoglutarate on macrophage functions in stressed rats. J Leukoc Biol. 2000 Jun;67(6):834-40. — View Citation
Nouwen LV, Everts B. Pathogens MenTORing Macrophages and Dendritic Cells: Manipulation of mTOR and Cellular Metabolism to Promote Immune Escape. Cells. 2020 Jan 9;9(1). pii: E161. doi: 10.3390/cells9010161. Review. — View Citation
Papapanou PN, Sanz M, Buduneli N, Dietrich T, Feres M, Fine DH, Flemmig TF, Garcia R, Giannobile WV, Graziani F, Greenwell H, Herrera D, Kao RT, Kebschull M, Kinane DF, Kirkwood KL, Kocher T, Kornman KS, Kumar PS, Loos BG, Machtei E, Meng H, Mombelli A, Needleman I, Offenbacher S, Seymour GJ, Teles R, Tonetti MS. Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Clin Periodontol. 2018 Jun;45 Suppl 20:S162-S170. doi: 10.1111/jcpe.12946. — View Citation
Rath M, Müller I, Kropf P, Closs EI, Munder M. Metabolism via Arginase or Nitric Oxide Synthase: Two Competing Arginine Pathways in Macrophages. Front Immunol. 2014 Oct 27;5:532. doi: 10.3389/fimmu.2014.00532. eCollection 2014. Review. — View Citation
Satoh T. [Functional diversity of disorder-specific macrophages]. Rinsho Ketsueki. 2018;59(6):805-811. doi: 10.11406/rinketsu.59.805. Japanese. — View Citation
Shinkevich VI, Kaidashev IP. [The role of immune cells factors in the remodeling of gingiva at chronic generalized periodontal disease]. Stomatologiia (Mosk). 2012;91(1):23-7. Russian. — View Citation
Shynkevych VI, Kaidashev IP. Contribution of macrophage subpopulations to the pathogenesis of chronic periodontitis in humans and perspectives for study. Review of the literature. Zaporozhye medical journal. 2019;21(1): 137-143. doi:10.14739/2310-1210.2019.1.155863.
Simsek B, Çakatay U. Could ornithine supplementation be beneficial to prevent the formation of pro-atherogenic carbamylated low-density lipoprotein (c-LDL) particles? Med Hypotheses. 2019 May;126:20-22. doi: 10.1016/j.mehy.2019.03.004. Epub 2019 Mar 9. — View Citation
Slots J. Periodontitis: facts, fallacies and the future. Periodontol 2000. 2017 Oct;75(1):7-23. doi: 10.1111/prd.12221. Review. — View Citation
Zhou LN, Bi CS, Gao LN, An Y, Chen F, Chen FM. Macrophage polarization in human gingival tissue in response to periodontal disease. Oral Dis. 2019 Jan;25(1):265-273. doi: 10.1111/odi.12983. Epub 2018 Oct 12. — View Citation
* Note: There are 21 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Periodontal pocket depth (PPD) | Mean changes in probing depth (PD). Measurements were taken from six periodontal sites on all teeth (except for the third molars) by a single calibrated examiner using a manual periodontal probe (0106.DT06.CP10, Den Tag, Italy) to the nearest 1 mm. | Before treatment and after 1 month ± 5 days. | |
Primary | Clinical attachment level (CAL) | Mean changes in clinical attachment level.Measurements were taken from six periodontal sites on all teeth (except for the third molars) by a single calibrated examiner using a manual periodontal probe (0106.DT06.CP10, Den Tag, Italy) to the nearest 1 mm. | Before treatment and after 1 month ± 5 days. | |
Primary | Bleeding on probing (BoP) measurements | Mean changes in BoP | Before treatment and after 1 month ± 5 days. | |
Secondary | CD68+ and CD163+ macrophages density in gingiva | The number of cells per 10 000 µm2 was calculated as immunopositive cell density | Before treatment and after 1 month ± 5 days. |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT04712630 -
Non-Incised Papillae Surgical Approach (NIPSA) With and Without Graft
|
N/A | |
Completed |
NCT06127069 -
Treatment of Residual Pockets in Periodontal Patients Using an Oscillating Chitosan Device
|
N/A | |
Completed |
NCT04964167 -
Indocyanine-green Mediated Photosensitizer VS Aloe Vera Gel: Adjunct Therapy to Scaling and Root Planing in Patients With Chronic Periodontitis
|
Phase 4 | |
Completed |
NCT05906797 -
Impact of Non-surgical Periodontal Therapy in the Improvement of Early Endothelial Dysfunction in Subjects With Periodontitis.
|
N/A | |
Recruiting |
NCT03997552 -
NIPSA Versus Marginal Approach by Palatal Incision and MIST in Periodontal Regeneration
|
N/A | |
Completed |
NCT05530252 -
Effects of AMP Application After Non-surgical Periodontal Therapy on Treatment of Periodontitis
|
Phase 4 | |
Completed |
NCT04881357 -
Antiplaque/Antigingivitis Effect of Lacer Oros Integral
|
N/A | |
Recruiting |
NCT03790605 -
A Clinical Trial to Study the Effect of a Drug, Curcumin in Patients With Periodontitis
|
Phase 3 | |
Enrolling by invitation |
NCT04971174 -
Outcomes of Periodontal Regenerative Treatment
|
||
Not yet recruiting |
NCT05568290 -
Interleukin-38 Levels in Individuals With Periodontitis
|
||
Completed |
NCT04383561 -
Relationship Between LRG and Periodontal Disease
|
N/A | |
Recruiting |
NCT03997578 -
Non-incised Papillae Surgical Approach (NIPSA) and Connective Tissue Graft Plus Emdogain for Periodontal Defects
|
N/A | |
Completed |
NCT03901066 -
Smoking Dependence and Periodontitis
|
||
Enrolling by invitation |
NCT04956211 -
Periodontal Treatment and Ischemic Stroke
|
N/A | |
Recruiting |
NCT05971706 -
Ozone Application in Periodontal Treatment
|
N/A | |
Recruiting |
NCT06099574 -
A Study on the Oral Health Status of Pregnant Women With Gestational Diabetes and Its Correlation With Oral Flora
|
||
Completed |
NCT04402996 -
Meteorin-like Levels in Individuals With Periodontitis
|
||
Active, not recruiting |
NCT05311657 -
Oral Health and Severe COPD
|
||
Not yet recruiting |
NCT06453278 -
(DDS) in India: a Screening Tool to Identify Prediabetes and Undiagnosed Type 2 Diabetes in Dental Settings
|
||
Not yet recruiting |
NCT05643287 -
The Effect of Time on the Outcome of Periodontal Treatment.
|
N/A |