View clinical trials related to Performance.
Filter by:The photobiomodulation (PBM) shows positive results in muscle performance, fatigue reduction, management of blood lactate production, analgesia and in the increase of VO2 maximal, favoring the increase of ATP production and thus the energy metabolism. The association of PBM applied before high-intensity treadmill training shows physiological improvements both in normoxic (Nor) and hypoxic (Hip) conditions. Anaerobic capacity (AC) is the maximum amount of ATP that can be resynthesized by anaerobic metabolism and is an important predictor of high-intensity exercise since an athlete's ability to perform efforts to increase maximal oxygen consumption (VO2max) depends on AL. In view of the above information the main objective of the present research project will be to investigate the effects of PBM on AC under normoxic and hypoxic conditions in amateur runners. To test the effects of exercise training on anaerobic capacity under normoxic and hypoxic conditions, 7 individuals will be randomly submitted to four maximal efforts to exhaustion with intensity corresponding to 110% of VO2max in Hip, Nor, Hip+Ebio and Nor+Ebio conditions. These efforts will be used to estimate the AC, that is, the maximum accumulated deficit of alternative oxygen (MAODRED), from the sum of the energy contribution of the anaerobic and lactic metabolisms.
While the negative impact of sleep deprivation on cognitive processing and the partial reversal of this phenomenon by caffeine are well known, the types of cognitive processing previously studied have been limited to simple, straight-forward laboratory tasks. It is unclear how sleep deprivation and caffeine affect performance on operationally relevant complex cognitive tasks, like those encountered by working professionals such as doctors. This study aims to uncover how sleep deprivation and caffeine impact two types of clinical reasoning processes encountered by physicians on a daily basis. Previous work from members of our team investigated diagnostic reasoning in medical professionals and discovered that brain activation in executive processing areas was modulated by self-reported sleepiness and burnout and level of expertise (Durning, Costanzo, et al., 2013; Durning et al., 2014, 2015). The current study aims to expand upon those findings by also investigating a potentially more complex type of clinical reasoning, i.e. therapeutic reasoning, and directly manipulating sleep and caffeine use in a controlled sleep laboratory. Medical students, residents, and board-certified physicians will undergo thirty-seven hours of sleep deprivation and ten hours of sleep recovery in the sleep laboratory. During two FMRI scan sessions we will present high-quality validated multiple-choice questions on common patient situations in internal medicine to participants to explore brain activity during therapeutic reasoning compared with diagnostic reasoning. One FMRI scan will occur following a night of sleep deprivation, and another scan will occur following a night of recovery sleep. Additionally, half of the participants will receive caffeine gum during the sleep deprivation period, while the other half will receive placebo gum. This design will allow us to study the effect of sleep deprivation and caffeine on the neural correlates of diagnostic and therapeutic reasoning and performance in general.
This study assesses differences in biological and behavioral domains that relate to individual adaptation and resiliency to an isolated, confined and controlled environment, and evaluates the effect of confinement, work, monotony, and social and physical isolation on stress resiliency and well-being.