Pediatric Solid Tumors Clinical Trial
Official title:
Molecular Analysis Of Solid Tumors
This study will prospectively characterize the molecular, cellular and genetic properties of primary and metastatic neuroblastoma, osteosarcoma, retinoblastoma, Ewing sarcoma family of tumors, soft tissue sarcomas, adrenocortical tumors and liver malignancies. These cell isolates will be used for gene expression array analysis, genomic analysis by [SNP] single nucleotide polymorphism chip, array [CGH] comparative genomic hybridization and next generation sequencing, and [TEM] transmission electron microscopy analysis. Additionally cell lines and orthotopic xenografts will be created from the obtained tumor specimens. The specificity of TCRs will be examined by comparing paired TCR from peripheral blood and tumor infiltrating CD4+ and CD8+ T cells. Epigenetic studies will be performed looking at the methylation profile of these cells and to investigate the anti-tumor T cell response both pre- and post-PD1 inhibition.
Each year approximately 2,200 children in the United States are diagnosed with neuroblastoma, osteosarcoma, Ewing sarcoma family of tumors (ESFT), retinoblastoma, soft tissue sarcomas, adrenocortical tumors and liver malignancies. These aggressive pediatric solid tumors are developmental tumors that initiate during periods of tissue growth and morphogenesis in the neural crest, bone and soft tissues. The overall survival rate of these tumors in the advanced stage is less than 30%. Despite intensive efforts over the past three decades using multiple therapeutic modalities including chemotherapy, surgery, radiation, autologous bone marrow transplant and biological agents there has been modest improvement in the long-term survival of these advanced stage pediatric solid tumors. A better understanding of the molecular, cellular and genetic changes that occur in the developing tissues as tumors form could improve the treatment of these devastating cancers. In particular, chemotherapeutic agents may be more effectively targeted to key regulatory enzymes or proteins if the study had a better understanding of the pathways that are disrupted as cells progress from preneoplastic lesions to metastatic disease. The specific aim of this proposal is to identify the changes in gene expression that occur in neuroblastoma, retinoblastoma, osteosarcoma, Ewing sarcoma family of tumors [ESFT] and soft tissue sarcoma cells and to correlate these changes with genetic and cellular changes in the tumor cells. [RNA] ribonucleic acid and genomic [DNA] deoxyribonucleic acid will be isolated from neuroblastoma, retinoblastoma, osteosarcoma, ESFT [Ewing sarcoma family of tumors] and soft tissue sarcomas (both primary and metastatic lesions) following surgery or bone marrow aspiration of previously untreated patients. Additional testing will be conducted on tumor samples at any point during or following therapy in which a surgical specimen is obtained. When there is sufficient tumor sample remaining after pathological analysis and banking, fresh primary tumor cells will be used to prepare orthotopic xenografts and to establish models of each disease that recapitulate the advanced forms of neuroblastoma, osteosarcoma, Ewing sarcoma family of tumors [ESFT], retinoblastoma and soft tissue sarcomas. For a small group of these excess samples, this study will perform fixation for electron microscopy and process the samples for [TEM] transmission electron microscopy analysis. These studies will complement our active research program characterizing the molecular, cellular and genetic features of genetically engineered mouse models of each of these diseases. Biological samples from the cohort of patients treated at St. Jude Children's Research Hospital will be complemented with samples collected and processed by collaborating institutions around the world. Samples collected from international collaborators will be used for analysis of [DNA] deoxyribonucleic acid and [RNA] ribonucleic acid to complement the St. Jude Children's Research Hospital cohort. Through this collaboration the study anticipates that they will be able to obtain enough fresh tumor samples to improve their understanding of multistage tumorigenesis in pediatric solid malignancies. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05608148 -
Clinical Trial of GAIA-102 for Refractory/Relapse Neuroblastomas and Other Malignant Pediatric Solid Tumors
|
Phase 1 | |
Withdrawn |
NCT02747537 -
Treating Relapsed/Recurrent/Refractory Pediatric Solid Tumors With Sorafenib in Combination With Irinotecan
|
Phase 2 | |
Recruiting |
NCT06171971 -
Clinical and Therapeutic Impact of Large Genomic Studies at Diagnosis in Pediatric Solid Cancers
|
||
Completed |
NCT01049841 -
Perifosine With Temsirolimus for Recurrent Pediatric Solid Tumors
|
Phase 1 | |
Completed |
NCT00990912 -
A Study to Document Long-Term Safety and Continued Benefit of Irinotecan and Carboplatin or Irinotecan in Subjects With Refractory Solid Tumors (Rollover Study -001, -002)
|
Phase 1/Phase 2 | |
Recruiting |
NCT04773808 -
Molecular Characterization of Genetic Alterations in Pediatric Solid Tumors
|