Clinical Trials Logo

Pancytopenia clinical trials

View clinical trials related to Pancytopenia.

Filter by:

NCT ID: NCT00315419 Active, not recruiting - Clinical trials for Myelodysplastic Syndromes

Identifying Characteristics of Bone Marrow Failure Syndromes

Start date: April 2006
Phase: N/A
Study type: Observational

Bone marrow failure syndromes (BMFS) are rare disorders characterized by dysfunctional hematopoietic stem cells, which give rise to all red and white blood cells. The deficiency of blood cells, or cytopenia, caused by this malfunction leads to an assortment of diseases and disorders, all of which are characterized as BMFS. Because these diseases are rare, conducting research on them is difficult, and standards of treatment for most BMFS have yet to be developed. This study will collect clinical and laboratory data from people with BMFS to identify the characteristics and biological markers associated with these diseases over time. This information will assist doctors and researchers to develop better therapies and diagnostic tests that will help improve the management of BMFS and cytopenias.

NCT ID: NCT00260689 Completed - Thrombocytopenia Clinical Trials

Three Immunosuppressive Treatment Regimens for Severe Aplastic Anemia

Start date: November 28, 2005
Phase: Phase 2
Study type: Interventional

Severe aplastic anemia (SAA) is a life-threatening bone marrow failure disorder characterized by pancytopenia and a hypocellular bone marrow. Allogeneic bone marrow transplantation offers the opportunity for cure in 70% of patients, but most patients are not suitable candidates for hematopoietic stem cell transplantation (HSCT) due to advanced age or lack of a histocompatible donor. For these patients, comparable long term survival is attainable with immunosuppressive treatment with anti-thymocyte globulin (ATG) and cyclosporine (CsA). However, of those patients treated with horse ATG(h-ATG)/CsA, one quarter to one third will not respond, and about 50% of responders relapse. Auto-reactive T cells may be resistant to the effect of ATG/CsA (non-responders), while in others residual auto-reactive T cells expand post-treatment, leading to hematopoietic stem cell destruction and recurrent pancytopenia (relapse). As long term survival is correlated to response rates and robustness of hematopoietic recovery, novel immunosuppressive regimens that can achieve hematologic response and decrease relapse rates are needed. This trial will compare the effectiveness of three immunosuppressive regimens as first line therapies in patients with SAA with early hematologic response as the primary endpoint, as well as assess the role of extended CsA treatment after h-ATG in reducing numbers of late events of relapse and clonal evolution. Randomization is employed to obtain an equal distribution of subject to each arm; comparisons of early hematologic responses will be made among the rates observed among the three concurrent arms (rabbit-ATG [r-ATG] versus standard h-ATG; alemtuzumab vs standard h-ATG). For long course CSA, comparison of primary end points will be to well established historic relapse rate of 38% at 2-3 years and a cumulative rate of clonal evolution of 15%. In the original design subjects were randomized to one of three different regimens: h-ATG + 6 months CsA followed by an 18 month CsA taper; r-ATG + 6 months CsA; or alemtuzumab (Campath). Subjects failing to respond to r-ATG will be crossed over to alemtuzumab (Campath), and subjects failing alemtuzumab (Campath) will be crossed over to r-ATG. Subjects failing to respond to h-ATG + CsA taper will go off study and be evaluated for eligibility for a second course of immunosuppression on companion protocol 03-H-0249, which similarly randomizes subjects between r-ATG and alemtuzumab (Campath) as salvage therapy. The Campath arm closed to new accrual for lack of efficacy on 4/10/2008. New accruals will be randomized to h-ATG + 6 months CsA followed by an 18 month CsA taper or r-ATG + 6 months CsA. Subjects failing to respond to r-ATG will continue to be crossed over to alemtuzumab (Campath ). Subjects failing to respond to h-ATG + CsA taper will go off study and be evaluated for eligibility for a second course of immunosuppression on companion protocol 03-H-0249, which similarly randomizes subjects between r-ATG and alemtuzumab (Campath ) as salvage therapy. The primary endpoint will be hematologic respnse, defined as no longer meeting criteria for SAA, at 6 months. Secondary endpoints are relapse, robustness of hematologic recovery at 6 months, response at 3 and 12 months, survival, clonal evolution to PNH, myelodysplasia and acute leukemia. Long-course CSA will be assessed separately for its efficacy in reducing late events of relapse and evolution by comparison to historical control data.

NCT ID: NCT00228813 Terminated - Clinical trials for Hematologic Malignancies

G-CSF PMRD: Granulocyte Colony Stimulating Factor (G-CSF) Stimulated Bone Marrow and In Vivo T-Cell Depletion in Patients With Hematologic Malignancies or Bone Marrow Failure Syndrome

G-CSF PMRD
Start date: April 2004
Phase: N/A
Study type: Interventional

The purposes of this study are: - To examine the engraftment rate in patients receiving in vivo T-cell-depleted G-CSF stimulated bone marrow from partially mismatched related donors. - To evaluate the incidence and severity of acute and chronic graft-versus-host disease in patients receiving in vivo T-cell-depleted G-CSF stimulated bone marrow from partially mismatched related donors.

NCT ID: NCT00176878 Completed - Clinical trials for Diamond-Blackfan Anemia

Stem Cell Transplant for Bone Marrow Failure Syndromes

Start date: June 2000
Phase: Phase 2/Phase 3
Study type: Interventional

The researchers hypothesize that it will be possible to perform unrelated bone marrow or cord blood transplants in a safer manner by using less intensive therapy yet still achieve an acceptable level of donor cell engraftment for non-malignant congenital bone marrow failure disorders.

NCT ID: NCT00085670 Completed - Clinical trials for Bone Marrow Diseases

Cytokine Gene Polymorphisms in Bone Marrow Failure

Start date: February 11, 2005
Phase:
Study type: Observational

This study will examine whether cytokine gene polymorphisms affect the progression or response to therapy of bone marrow failure disorders. Cytokine genes instruct cells to produce proteins called cytokines that influence immune system response. As with many genes, the cytokine genes differ slightly from person to person. These differences are called gene polymorphisms. Different patients with the same bone marrow failure disease often progress and respond to treatment differently. This study will look at the possible role of cytokine gene polymorphisms in these differences. Patients between 2 and 80 years old who have participated in an NHLBI Hematology Branch treatment protocol for acquired aplastic anemia, myelodysplastic syndrome, or pure red cell aplasia are recruited to participate in this study. Blood collected and stored at the time of screening for the treatment protocol will be tested for cytokine gene polymorphisms. No additional tests, procedures, or treatments are involved in this study.

NCT ID: NCT00038779 Terminated - Leukemia Clinical Trials

Blood Transplantation for Patients With Hematologic Malignancies or Bone Marrow Failure States

Start date: August 14, 1996
Phase: N/A
Study type: Interventional

The purpose of this study is to assess early treatment failure within 100 days and to assess the effect of this regimen on engraftment, GVHD, immune recovery, relapse of malignancy and survival.

NCT ID: NCT00027274 Recruiting - Fanconi Anemia Clinical Trials

Cancer in Inherited Bone Marrow Failure Syndromes

Start date: November 28, 2001
Phase:
Study type: Observational

Background: A prospective cohort of Inherited Bone Marrow Failure Syndrome (IBMFS) will provide new information regarding cancer rates and types in these disorders. Pathogenic variant(s) in IBMFS genes are relevant to carcinogenesis in sporadic cancers. Patients with IBMFS who develop cancer differ in their genetic and/or environmental features from patients with IBMFS who do not develop cancer. These cancer-prone families are well suited for cancer screening and prevention trials targeting those at increased genetic risk of cancer. Carriers of IBMFS pathogenic variant(s) are at increased risk of cancer. The prototype disorder is Fanconi's Anemia (FA); other IBMFS will also be studied. Objectives: To determine the types and incidence of specific cancers in patients with an IBMFS. To investigate the relevance of IBMFS pathogenic variant(s) in the carcinogenesis pathway of the sporadic counterparts of IBMFS-associated cancers. To identify risk factors for IBMFS-related cancers in addition to the primary germline pathogenic variant(s). To determine the risk of cancer in IBMFS carriers. Eligibility: North American families with a proband with an IBMFS. IBMFS suspected by phenotype, confirmed by pathogenic variant(s) in an IBMFS gene, or by clinical diagnostic test. Fanconi's anemia: birth defects, marrow failure, early onset malignancy; positive chromosome breakage result. Diamond-Blackfan anemia: pure red cell aplasia; elevated red cell adenosine deaminase. Dyskeratosis congenita: dysplastic nails, lacey pigmentation, leukoplakia; marrow failure. Shwachman-Diamond Syndrome: malabsorption; neutropenia. Amegakaryocytic thrombocytopenia: early onset thrombocytopenia. Thrombocytopenia absent radii: absent radii; early onset thrombocytopenia. Severe Congenital Neutropenia: neutropenia, pyogenic infections, bone marrow maturation arrest. Pearson's Syndrome: malabsorption, neutropenia, marrow failure, metabolic acidosis; ringed sideroblasts. Other bone marrow failure syndromes: e.g. Revesz Syndrome, WT, IVIC, radio-ulnar synostosis, ataxia-pancytopenia. First degree relatives of IBMFS-affected subjects as defined here, i.e. siblings (half or full), biologic parents, and children. Grandparents of IBMFS-affected subjects. Patients in the general population with sporadic tumors of the types seen in the IBMFS (head and neck, gastrointestinal, and anogenital cancer), with none of the usual risk factors (e.g. smoking, drinking, HPV). Design: Natural history study, with questionnaires, clinical evaluations, clinical and research laboratory test, review of medical records, cancer surveillance. Primary endpoints are all cancers, solid tumors, and cancers specific to each type of IBMFS. Secondary endpoints are markers of pre-malignant conditions, such as leukoplakia, serum or tissue evidence of carcinogenic viruses, and bone marrow morphologic myelodyplastic syndrome or cytogenetic clones....

NCT ID: NCT00005796 Completed - Clinical trials for Brain and Central Nervous System Tumors

Combination Chemotherapy Plus Gene Therapy in Treating Patients With CNS Tumors

Start date: February 2000
Phase: Phase 1
Study type: Interventional

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one drug may kill more tumor cells. Inserting a specific gene into a person's peripheral stem cells may improve the body's ability to fight cancer or make the cancer more sensitive to chemotherapy. PURPOSE: Phase I trial to study the effectiveness of combination chemotherapy plus gene therapy in treating patients who have CNS tumors.

NCT ID: NCT00004143 Completed - Sickle Cell Anemia Clinical Trials

Allogeneic Mixed Chimerism Stem Cell Transplant Using Campath for Hemoglobinopathies & Bone Marrow Failure Syndromes

Start date: September 1999
Phase: Phase 2
Study type: Interventional

RATIONALE: Although used primarily to treat malignant disorders of the blood, allogeneic stem cell transplantation can also cure a variety of non-cancerous, inherited or acquired disorders of the blood. Unfortunately, the conventional approach to allogeneic stem cell transplantation is a risky procedure. For some non-cancerous conditions, the risks of this procedure outweigh the potential benefits. This protocol is designed to test a new approach to allogeneic stem cell transplantation. It is hoped that this approach will be better suited for patients with non-cancerous blood and bone marrow disorders.

NCT ID: NCT00003805 Completed - Lymphoma Clinical Trials

Prevention of Infection in Patients With Hematologic Cancer and Persistent Fever Caused by a Low White Blood Cell Count

Start date: November 1997
Phase: Phase 3
Study type: Interventional

RATIONALE: Antibiotic therapy may prevent the development of infection in patients with hematologic cancer and the persistent fever caused by a low white blood cell count. It is not yet known which regimen of antibiotics is most effective in preventing infection in these patients. PURPOSE: Randomized phase III trial to study the effectiveness of piperacillin-tazobactam with or without vancomycin in reducing fever in patients who have leukemia, lymphoma, or Hodgkin's disease.