View clinical trials related to Pancytopenia.
Filter by:Background: - Stem cell transplants from related donors (allogenic stem cell transplants) can be used to treat individuals with certain kinds of severe blood diseases or cancers, such as severe anemia. Allogenic stem cell transplants encourage the growth of new bone marrow to replace that of the recipient. Because stem cell transplants can have serious complications, researchers are interested in developing new approaches to stem cell transplants that will reduce the likelihood of these complications. - By reducing the number of white blood cells included in the blood taken during the stem cell collection process, and replacing them with a smaller amount of white blood cells collected prior to stem cell donation, the stem cell transplant may be less likely to cause severe complications for the recipient. Researchers are investigating whether altering the stem cell transplant donation procedure in this manner will improve the likelihood of a successful stem cell transplant with fewer complications. Objectives: - To evaluate a new method of stem cell transplantation that may reduce the possibly of severe side effects or transplant rejection in the recipient. Eligibility: - Recipient: Individuals between 4 and 80 years of age who have been diagnosed with a blood disease that can be treated with allogenic stem cell transplants. - Donor: Individuals between 4 and 80 years of age who are related to the recipient and are eligible to donate blood. OR unrelated donors found through the National Marrow Donor Program. Design: - All participants will be screened with a physical examination and medical history. - DONORS: - Donors will undergo an initial apheresis procedure to donate white blood cells. - After the initial donation, donors will receive injections of filgrastim to release bone marrow cells into the blood. - After 5 days of filgrastim injections, donors will have apheresis again to donate stem cells that are present in the blood. - RECIPIENTS: - Recipients will provide an initial donation of white blood cells to be used for research purposes only. - From 7 days before the stem cell transplant, participants will be admitted to the inpatient unit of the National Institutes of Health Clinical Center and will receive regular doses of cyclophosphamide, fludarabine, and anti-thymocyte globulin to suppress their immune system and prepare for the transplant. - After the initial chemotherapy, participants will receive the donated white blood cells and stem cells as a single infusion. - After the stem cell and white blood cell transplant, participants will have regular doses of cyclosporine and methotrexate to prevent rejection of the donor cells. Participants will have three doses of methotrexate within the week after the transplant, but will continue to take cyclosporine for up to 4 months after the transplant. - Participants will remain in inpatient care for up to 1 month after the transplant, and will be followed with regular visits for up to 3 years with periodic visits thereafter to evaluate the success of the transplant and any side effects.
T cell depletion utilizing the CliniMACS device will allow more precise, specific and controlled graft engineering of peripheral blood stem cells from unrelated and partially matched related donors without an increase in relapse or graft rejection and grade III or IV acute graft versus host disease (GVHD).
Unrelated matched donor (cord blood, bone marrow or peripheral blood) allogeneic stem cell transplantation (UDAlloSCT) with either myeloablative or reduced intensity conditioning will be well tolerated and result in a high degree of engraftment in patients with selected malignant and non malignant disorders.
CD34+ stem cell selection in children, adolescents and young adults receiving partially matched family donor or matched unrelated adult donor allogeneic bone marrow or peripheral blood stem cell transplant will be safe and well tolerated and be associated with a low incidence of serious (Grade III/IV) acute and chronic graft versus host disease (GVHD).
Reduced intensity conditioning followed by allogeneic stem cell transplantation will result in mixed/complete donor chimerism and potentially alter the natural history and outcome of patients with non-malignant diseases.
The primary purpose is to determine the ability of CD34+ selection and T cell depletion using the CliniMACS® device to prevent severe acute graft-versus-host disease (GVHD) in patients receiving a stem cell transplant from an alternative (unrelated and mismatched related) donor. The secondary objectives include evaluation of engraftment, immune recovery, and post-transplant infections. Patients requiring stem cell transplants for either malignant (cancerous) or non-malignant disease will be included in the study. The recipients will be grouped into one of two groups based on whether the donor is mismatched related (Cohort A) or unrelated (Cohort B). The patient will receive a conditioning regimen including chemotherapy drugs and/or total body irradiation based on the disease for which the transplant is performed.
To determine the time to and rate of hematologic engraftment following unrelated umbilical cord blood transplantation in adults with one or two cord blood units using total body irradiation and fludarabine as the transplant conditioning regimen and cyclosporine/MMF as graft-versus-host disease prophylaxis.
Randomized comparison of cyclophosphamide versus reduced-dose cyclophosphamide plus fludarabine in addition to anti-thymocyte globulin for the conditioning therapy in allogeneic hematopoietic cell transplantation for bone marrow failure syndrome.
RATIONALE: Giving low doses of chemotherapy and antithymocyte globulin before a donor stem cell transplant helps stop the growth of abnormal cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining abnormal cells (graft-versus-tumor effect). PURPOSE: This phase II trial is studying how well a donor stem cell transplant works after busulfan, fludarabine, methylprednisolone, and antithymocyte globulin in treating patients with bone marrow failure syndrome.
Treatment for patients with autoimmune destruction of blood cells is poor. The part of the body that fights infections is called the immune system and white blood cells (WBCs) are part of the immune system. Normally, a person's body creates WBCs to fight infections and eliminates WBCs which have stopped helping the body function. Patients with autoimmune destruction of blood cells have difficulty eliminating old WBCs. The abnormal WBCs build up and can damage other healthy cells, which can lead to anemia, fatigue, jaundice, internal bleeding, infection, and cancer. Few effective medications exist for treatment for patients with autoimmune cytopenias and those commonly used are fraught with side effects. Nevertheless, as scientific understanding of autoimmune diseases has improved, more directed and less toxic therapies are becoming available. A number of groups have been studying the efficacy of a medication called sirolimus in patients with autoimmune diseases. This medicine has been FDA-approved for over 20 years. Sirolimus is a medicine used in children with other diseases. Sirolimus works, in part, by eliminating old and abnormal WBCs. Our group and others have shown that sirolimus is effective in mice with autoimmunity and in children with a rare condition called Autoimmune Lymphoproliferative Syndrome (ALPS). We believe sirolimus will help children with autoimmune cytopenias. We believe it will improve their symptoms and make them less sick. We propose to study sirolimus in children with chronic and/or refractory autoimmune cytopenias.