Mechanical Ventilation Complication Clinical Trial
Official title:
Does Closed-loop Automated Oxygen Control During Mechanical Ventilation Reduce the Duration of Supplementary Oxygen Treatment and the Amount of Time Spent in Hyperoxia? A Randomised Trial in Ventilated Infants Born at or Near Term
Ventilated newborns frequently need supplemental oxygen but its use must be monitored carefully as both giving too much or too little oxygen can have harmful effects. Giving too little oxygen results to low oxygen levels (hypoxia) and increases the risk of complications and mortality. Excessive oxygen delivery (hyperoxia) increases the risk of diseases involving several organs such as the retinas and the lungs. Although infants born very preterm require support with their breathing more often, more mature neonates may also need to be ventilated at birth and to receive supplemental oxygen. Therefore, they may suffer from problems related to hypoxia and hyperoxia. For the above reasons, oxygen levels are continuously monitored and the amount of oxygen provided is manually adjusted by the nurses and doctors. Closed-loop automated oxygen control systems (CLAC) are a more recent approach that involves the use of a computer software added to the ventilator. This software allows for automatic adjustment of the amount of oxygen provided to the baby in order to maintain oxygen levels within a desired target range depending on the baby's age and clinical condition. Previous studies in preterm and very small infants showed that automated oxygen control systems provided the right amount of oxygen for most of the time and prevented hypoxia and hyperoxia with fewer manual adjustments required by clinical staff. Preliminary results from a study that included infants born at 34 weeks gestation and beyond showed that CLAC systems allowed to reduce the amount of supplementary oxygen more rapidly. With this study we aim to compare the time spent in hyperoxia and the overall duration of oxygen treatment between infants whose oxygen is adjusted either manually or automatically while they remain ventilated. This will help us understand if CLAC systems help reduce the complications related to oxygen treatment.
Status | Recruiting |
Enrollment | 40 |
Est. completion date | December 1, 2023 |
Est. primary completion date | December 1, 2023 |
Accepts healthy volunteers | No |
Gender | All |
Age group | N/A and older |
Eligibility | Inclusion Criteria: - Infants born at or above 34 weeks completed gestation requiring mechanical ventilation and admitted to King's NICU within 24 hours of initiation of mechanical ventilation. Exclusion Criteria: - Preterm infants less than 34 weeks gestation - Infants with cyanotic congenital heart disease - Infants on high frequency oscillatory ventilation (HFOV) |
Country | Name | City | State |
---|---|---|---|
United Kingdom | King's College Hospital | London |
Lead Sponsor | Collaborator |
---|---|
King's College Hospital NHS Trust | King's College London |
United Kingdom,
Abdo M, Hanbal A, Asla MM, Ishqair A, Alfar M, Elnaiem W, Ragab KM, Nourelden AZ, Zaazouee MS. Automated versus manual oxygen control in preterm infants receiving respiratory support: a systematic review and meta-analysis. J Matern Fetal Neonatal Med. 2022 Dec;35(25):6069-6076. doi: 10.1080/14767058.2021.1904875. Epub 2021 Apr 8. — View Citation
Lakshminrusimha S, Konduri GG, Steinhorn RH. Considerations in the management of hypoxemic respiratory failure and persistent pulmonary hypertension in term and late preterm neonates. J Perinatol. 2016 Jun;36 Suppl 2:S12-9. doi: 10.1038/jp.2016.44. — View Citation
Ramadan G, Paul N, Morton M, Peacock JL, Greenough A. Outcome of ventilated infants born at term without major congenital abnormalities. Eur J Pediatr. 2012 Feb;171(2):331-6. doi: 10.1007/s00431-011-1549-8. Epub 2011 Aug 11. — View Citation
Salverda HH, Cramer SJE, Witlox RSGM, Dargaville PA, Te Pas AB. Automated oxygen control in preterm infants, how does it work and what to expect: a narrative review. Arch Dis Child Fetal Neonatal Ed. 2021 Mar;106(2):215-221. doi: 10.1136/archdischild-2020-318918. Epub 2020 Jul 30. — View Citation
Sturrock S, Ambulkar H, Williams EE, Sweeney S, Bednarczuk NF, Dassios T, Greenough A. A randomised crossover trial of closed loop automated oxygen control in preterm, ventilated infants. Acta Paediatr. 2021 Mar;110(3):833-837. doi: 10.1111/apa.15585. Epub 2020 Oct 6. — View Citation
Williams LZJ, McNamara D, Alsweiler JM. Intermittent Hypoxemia in Infants Born Late Preterm: A Prospective Cohort Observational Study. J Pediatr. 2019 Jan;204:89-95.e1. doi: 10.1016/j.jpeds.2018.08.048. Epub 2018 Oct 1. — View Citation
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | The duration of oxygen treatment | The duration of oxygen treatment will be measured in median (interquartile range) number of days of oxygen treatment for participants in each group. | Through study completion, an average of 1 year | |
Primary | The percentage of time spent in hyperoxia | Target oxygen saturation range for our study population is 92-96%. Hyperoxia is defined as the time spent with oxygen saturation levels exceeding 96%. The time spent in hyperoxia will be calculated as a percentage of the total time of monitoring. | Through study completion, an average of 1 year | |
Secondary | The percentage of time spent receiving an inspired oxygen concentration (FiO2) above 30% | The time spent with an FiO2>30% will be calculated as a percentage of the total time of monitoring. | Through study completion, an average of 1 year |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05030337 -
Optimising Ventilation in Preterms With Closed-loop Oxygen Control
|
N/A | |
Completed |
NCT05144607 -
Impact of Inspiratory Muscle Pressure Curves on the Ability of Professionals to Identify Patient-ventilator Asynchronies
|
N/A | |
Recruiting |
NCT03697785 -
Weaning Algorithm for Mechanical VEntilation
|
N/A | |
Completed |
NCT05084976 -
Parental Perception of COVID-19 Vaccine in Technology Dependent Patients
|
||
Active, not recruiting |
NCT05886387 -
a Bayesian Analysis of Three Randomised Clinical Trials of Intraoperative Ventilation
|
||
Completed |
NCT04429399 -
Lowering PEEP: Weaning From High PEEP Setting
|
N/A | |
Completed |
NCT02249039 -
Intravenous Clonidine for Sedation in Infants and Children Who Are Mechanically Ventilated - Dosing Finding Study
|
Phase 1 | |
Recruiting |
NCT02071524 -
Evaluation of the Effects of Fluid Therapy on Respiratory Mechanics
|
N/A | |
Completed |
NCT01114022 -
Prevention Inhalation of Bacterial by Using Endotracheal Tube Balloon Polyvinyl Chloride or Polyurethane
|
N/A | |
Completed |
NCT00893763 -
Strategies To Prevent Pneumonia 2 (SToPP2)
|
Phase 2 | |
Terminated |
NCT05056103 -
Automated Secretion Removal in ICU Patients
|
N/A | |
Active, not recruiting |
NCT04558476 -
Efficacy of CONvalescent Plasma in Patients With COVID-19 Treated With Mechanical Ventilation
|
Phase 2 | |
Recruiting |
NCT05295186 -
PAV Trial During SBT Trial
|
||
Active, not recruiting |
NCT05370248 -
The Effect of 6 ml/kg vs 10 ml/kg Tidal Volume on Diaphragm Dysfunction in Critically Mechanically Ventilated Patient
|
N/A | |
Completed |
NCT04589910 -
Measuring Thickness of the Normal Diaphragm in Children Via Ultrasound.
|
N/A | |
Completed |
NCT04818164 -
Prone Position Improves End-Expiratory Lung Volumes in COVID-19 Acute Respiratory Distress Syndrome
|
||
Completed |
NCT04193254 -
LPP , MP and DP:Relation With Mortality and SOFA in Mechanically Ventilated Patients in ER, Ward and ICU
|
||
Completed |
NCT06332768 -
NIV Versus HFO Versus Standard Therapy Immediately After Weaning From Mechanical Ventilation in ARDS Patients
|
N/A | |
Not yet recruiting |
NCT03259854 -
Non Invasive Mechanical Ventilation VERSUS Oxygen MASK
|
N/A | |
Not yet recruiting |
NCT03245684 -
Assisted or Controlled Ventilation in Ards (Ascovent)
|
N/A |