Clinical Trials Logo

Clinical Trial Summary

Thrombotic thrombocytopenic purpura (TTP) is a rare and life-threatening thrombotic microangiopathy characterized by thrombocytopenia, microangiopathic hemolytic anemia, and microvascular thrombosis causing neurological and renal abnormalities; it is associated with massive depletion of platelets in the microvasculature to form microthrombi1 . Long-term follow-up of patients with congenital TTP (cTTP) revealed frequent strokes and renal injury. Of 217 surviving patients, 62 (29%) had a stroke; the median age was 21 years. iTTP patients also require long-term follow-up. iTTP patients with low ADAMTS13 activity (<70%) in remission have a 28% risk of stroke. Survival rates of iTTP patients in remission were lower than those of age-, race-, and sex-matched populations. In terms of stable treatment, maintenance therapy is not recommended for patients with iTTP. Previous studies have shown that aspirin may be able to prevent stroke complications in patients with cTTP and iTTP. In addition to its potential efficacy, the risks of aspirin are small and inexpensive. Aspirin is very effective in secondary prevention of stroke 6. However, the therapeutic value of aspirin in TTP has not been studied previously. To improve the prognosis and survival of patients with cTTP and iTTP, we propose to conduct a prospective study to observe the efficacy and safety of aspirin in patients with cTTP and iTTP in remission.


Clinical Trial Description

Thrombotic thrombocytopenic purpura (TTP) is a rare, life-threatening thrombotic microangiopathy. It is characterized by thrombocytopenia, microangiopathic hemolytic anemia, and microvascular thrombosis causing neurologic and kidney abnormalities . TTP is caused by a severe deficiency of ADAMTS13 (A Disintegrin and Metalloprotease with ThromboSpondin type 1 repeats, member 13) . Severe ADAMTS13 deficiency can be hereditary (hTTP), caused by biallelic pathogenic mutations of the ADAMTS13 genes, or acquired (iTTP), caused by anti-ADAMTS13 autoantibodies. Its main diagnostic criterion is a severe deficiency of ADAMTS13 (activity <10%) . hTTP is currently managed by prophylaxis with plasma infusions. Because lifetime plasma infusions are a major lifestyle burden, the current practice is to begin prophylaxis when ischemic symptoms occur. Evaluation of plasma prophylaxis by the International Hereditary Registry reported that it was not effective for decreasing the occurrence of acute episodes. When recombinant ADAMTS13 (rADAMTS13) is commercially available, prophylaxis may begin sooner and be more effective. Acute episodes of iTTP are effectively treated with ADAMTS13 replacement and immunosuppression. During remission, immunosuppression is recommended to prevent relapse if ADAMTS13 activity is <20%. If ADAMTS13 activity is less than normal but ≥20%, no treatment is recommended. Long-term follow-up of patients with hTTP has identified the frequent occurrence of stroke and kidney injury. Among 217 patients who survived infancy, 62 (29%) had had a stroke; the median age was 21 years. Long-term follow-up is also required for patients with iTTP. iTTP patients with low ADAMTS13 activity (<70%) during remission have a 28% risk for stroke. Survival of iTTP patients in remission is less than the age, race, and gender-match population. No maintenance treatment is recommended for patients with iTTP. Severe ADAMTS13 deficiency in patients with TTP allows the circulation of ultra-large multimers of von Willebrand factor (VWF). Turbulent circulation causes exposure of the VWF platelet binding site. Binding of the platelet VWF receptor, GPIbα, to the ultra-large VWF multimers is the essential initial which step for the initiation of thrombosis. A recent study documented that platelet binding to von Willebrand factor activates the platelet fibrinogen receptor, αIIbβ3, initiating platelet aggregation. Aspirin blocks αIIbβ3 activation and prevents platelet aggregation. Studies of TTP in mice have documented that aspirin decreases thrombosis. These data suggest that it may provide protection against stroke in patients with hTTP and iTTP. In addition to its potential efficacy, aspirin has minimal risks, and it is inexpensive. Aspirin is very effective for the secondary prevention of stroke. However, the therapeutic value of aspirin in TTP has not previously been studied. To improve the prognosis and survival of patients with hTTP and iTTP, we propose to conduct a prospective study to observe the efficacy and safety of aspirin in patients with the iTTP and hTTP in remission. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05568147
Study type Interventional
Source The First Affiliated Hospital of Soochow University
Contact Jiaqian Qi, MD
Phone 8618913091817
Email qijq@suda.edu.cn
Status Not yet recruiting
Phase Phase 2/Phase 3
Start date October 1, 2022
Completion date September 30, 2028

See also
  Status Clinical Trial Phase
Recruiting NCT03605511 - TTP and aHUS in Complicated Pregnancies
Recruiting NCT05785468 - A Retrospective, Observational Study on the Response to Caplacizumab Treatment in aTTP Patients: the Italian Experience (ROSCAPLI)
Completed NCT04074187 - A Trial of Caplacizumab in Japanese Patients With Acquired Thrombotic Thrombocytopenic Purpura (aTTP) Phase 2/Phase 3
Terminated NCT00953771 - Safety Study of Danazol With Plasma Exchange and Steroids for the Treatment of Thrombotic Thrombocytopenic Purpura (TTP) Phase 2
Recruiting NCT01257269 - Genotype and Phenotype Correlation in Hereditary Thrombotic Thrombocytopenic Purpura (Upshaw-Schulman Syndrome)
Recruiting NCT05468320 - Caplacizumab and Immunosuppressive Therapy Without Firstline Therapeutic Plasma Exchange in Adults With Immune-mediated Thrombotic Thrombocytopenic Purpura Phase 3
Completed NCT00713193 - Study of Cyclosporine or Corticosteroids as an Adjunct to Plasma Exchange in Thrombotic Thrombocytopenic Purpura (TTP) Phase 3
Completed NCT00426686 - ADAMTS13 in Thrombotic Thrombocytopenic Purpura N/A
Withdrawn NCT00251277 - Use of Rituximab Treatment in Addition to Standard Care for Newly Presenting Thrombotic Thrombocytopenic Purpura Phase 1/Phase 2
Recruiting NCT04588194 - Romiplostim, Rituximab and Dexamethasone as Frontline Treatment for Immune Thrombocytopenia Phase 2
Active, not recruiting NCT03237819 - Magnesium Sulfate in Thrombotic Thrombocytopenic Purpura in Intensive Care Phase 3
Completed NCT00907751 - Rituximab in Adult Acquired Idiopathic Thrombotic Thrombocytopenic Purpura Phase 2
Completed NCT03369314 - Observational Study of the Use of octaplasLG®.
Terminated NCT01938404 - Octaplas Adult TTP Trial
Recruiting NCT04981028 - The ConNeCT Study: Neurological Complications of TTP
Completed NCT02134171 - Early Predictive Factors of Cardiac and Cerebral Involvement in TMA N/A
Recruiting NCT05389007 - .German TTP-Registry (Thrombotic Thrombocytopenic Purpura)
Withdrawn NCT02626663 - The Role of Microparticles as a Biomarker
Completed NCT01931644 - At-Home Research Study for Patients With Autoimmune, Inflammatory, Genetic, Hematological, Infectious, Neurological, CNS, Oncological, Respiratory, Metabolic Conditions
Terminated NCT00593229 - International Registry and Biorepository for TMA(Thrombotic Microangiopathy) N/A