Clinical Trials Logo

Clinical Trial Summary

Main objective: Compare the recognition of environmental sounds with an anatomy-based fitting and with a default fitting adult patients newly implanted with a MED-EL cochlear implant. Secondary objectives: Compare speech recognition in quiet with an anatomy-based fitting and with a default fitting in adult patients newly implanted with a MED-EL cochlear implant. Compare speech recognition in noise with an anatomy-based fitting and with a default fitting in adult patients newly implanted with a MED-EL cochlear implant.


Clinical Trial Description

Introduction: Cochlear implantation allows the rehabilitation of profound bilateral deafness, restoring speech perception and verbal communication when the traditional hearing aid no longer provides satisfactory hearing gain. A cochlear implant includes an electrode array and its functioning is based on the principle of cochlear tonotopy: each electrode encodes a frequency spectrum according to its position in the cochlea (high frequencies are assigned to the basal electrodes and low frequencies to the apical electrodes). The cochlear implant thus breaks down the frequency spectrum into a number of frequency bands via bandpass filters corresponding to the number of electrodes in the implant. During the fitting these bands can be modified by the audiologist. The fitting software developed by the manufacturers proposed a default fitting with a lower limit between 100 and 250 Hz according to the brands and an upper limit of about 8500 Hz. The frequency bands assigned to each electrode follow a logarithmic scale with the high frequencies for the basal electrodes and the low frequencies for the apical electrodes. This distribution takes into account the number of active electrodes but does not take into account the anatomy and the natural cochlear tonotopy specific to each patient. Several studies have analyzed the anatomical variations of the cochlear dimensions: size of the cochlea and the ratio between the contact surfaces of the electrodes with the cochlea are variable from one patient to another. The insertion depth during surgery is also variable due to parameters related to the patients as well as to the operator, which seems to impact the understanding of speech in noise. Mathematical algorithms have recently been developed to estimate the cochlear tonotopy of each patient from a CT scan assessment. CT imaging of the implanted ear combined with 3D reconstruction software, provides cochlear length measurements Using this approach it is possible to measure the position of each electrode relative to the cochlear apex. Recently, MED-EL (Austria) has developed a new approach based on CT-scan and tuning of the frequencies associated with each electrode using anatomical information of position of the electrodes in the cochlea: this fitting is called anatomy-based fitting. Main objective: Compare the recognition of environmental sounds with an anatomy-based fitting and with a default fitting adult patients newly implanted with a MED-EL cochlear implant. Secondary objectives: Compare speech recognition in quiet with an anatomy-based fitting and with a default fitting in adult patients newly implanted with a MED-EL cochlear implant. Compare speech recognition in noise with an anatomy-based fitting and with a default fitting in adult patients newly implanted with a MED-EL cochlear implant. Plan of the study: It is a prospective open monocentric randomized crossover study: measures will be done on the patient at 6 weeks and 12 weeks post-activation. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05230498
Study type Interventional
Source MED-EL Elektromedizinische Geräte GesmbH
Contact Vincent Péan, PhD
Phone 603592974
Email vincent.pean@medel.com
Status Recruiting
Phase N/A
Start date February 15, 2022
Completion date November 15, 2024

See also
  Status Clinical Trial Phase
Recruiting NCT05621798 - Quantifying the Benefits and Cost-effectiveness of Real-Ear Measurements (REM) for Hearing Aid Fitting N/A
Completed NCT04571333 - Feasibility of the Mi2000 Totally Implantable Cochlear Implant in Severely to Profoundly Deaf Adults. N/A
Recruiting NCT05821959 - Gene Therapy Trial for Otoferlin Gene-mediated Hearing Loss Phase 1/Phase 2
Completed NCT04777565 - Study of a Minimally Invasive Cochlear Access for Cochlear Implantation Via a Robotic Procedure N/A
Not yet recruiting NCT05154188 - Post Approval Study to Assure the ContInued saFety and effectIveness of Neuro Cochlear Implant System in Adult Users
Completed NCT03304106 - Clinical Investigation of New CI Delivery Models in an Adult Nucleus CI Population N/A
Recruiting NCT05898659 - Comparison in New Cochlear Implanted Subjects of a Tonotopy-based Bimodal Fitting With or Without Synchronization N/A
Recruiting NCT05955469 - Comparison in New Cochlear Implanted Subjects of a Tonotopy-based Bimodal Fitting and a Conventional Fitting N/A
Completed NCT04145661 - Non-linear Frequency Compared to Conventional Processing in Patients With and Without Cochlear Dead Regions. N/A
Recruiting NCT05402813 - Natural History in Children up to 10 Years With Moderate to Profound Hearing Loss Due to Mutations in GJB2 / OTOF Genes
Not yet recruiting NCT06354010 - Cross-sectional and Prospective Study to Characterize Early-onset Presbycusis
Completed NCT02755935 - CI532 - Early Experience Study N/A
Completed NCT04469946 - Hearing Aid Noise Reduction in Pediatric Users Pilot Study (Oticon Pilot Study) N/A
Recruiting NCT05369598 - Audiological and Quality of Life Outcomes of Anatomy Based Fitting in Patients Implanted by Robot Assisted Cochlear Implant Surgery (RACIS) N/A
Completed NCT04922619 - Study of Music and Speech Perception in New Cochlear Implanted Subjects Using or Not a Tonotopy Based Fitting N/A
Recruiting NCT05572073 - Otoferlin Gene-mediated Hearing Loss Natural History Study
Recruiting NCT04591093 - Auditory Performances With Different Stimulation Depths in Cochlear Implanted Subjects Using a Fine Structure Strategy N/A
Completed NCT03993899 - Study of Quality Perception on Music in New Cochlear Implanted Subjects Using or Not a Fine Structure Strategy N/A
Withdrawn NCT03694704 - Study of Auditory Performance on Prosodic Tests in Cochlear Implanted Subjects Using a Fine Structure Strategy N/A
Terminated NCT03904420 - An Evidence Based Delivery Model of Care for Newly Implanted Adult CI Recipients N/A