Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT05200156
Other study ID # Choline in NAFLD
Secondary ID
Status Recruiting
Phase N/A
First received
Last updated
Start date February 1, 2022
Est. completion date February 1, 2024

Study information

Verified date October 2022
Source Ain Shams University
Contact Amal El Kholy, PhD
Phone 201060355448
Email amalanas9@gmail.com
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

The study will be assessing the impact of choline supplementation in Non-alcoholic fatty liver disease patients using ultrasonography to show change in liver echogenicity, various laboratory tests as liver function, lipid profile and glucose control tests and finally on markers of oxidative stress as Thiobarbituric acid reactive substances and Leptin.


Description:

Non-alcoholic fatty liver disease (NAFLD) has attracted increasing attention given its high prevalence, estimated at 20% to 44% in Western countries and 5% to 38% in Asia as well as its correlation with cardiovascular morbidity and mortality. NAFLD is the result of hepatic fat accumulation in patients without a history of excessive alcohol consumption, predisposing medications or other defined liver disorders. NAFLD comprises a spectrum of liver disorders. At one end of this spectrum, is simple hepatic steatosis and the other end is non-alcoholic steatohepatitis (NASH) which is characterized by hepatocellular injury, inflammation and fibrosis sometimes leading to cirrhosis. It is considered the hepatic manifestation of metabolic syndrome, which is defined by the presence of central obesity, insulin resistance, hyperlipidemia, hyperglycemia, and hypertension. According to the multiple parallel hits in NAFLD pathogenesis, the first hit is insulin resistance, which results in increased hepatic de novo lipogenesis and impaired adipose tissue lipolysis.These conditions cause an efflux of free fatty acids from the adipose tissue to the liver. The liver becomes vulnerable to a series of hits, including oxidative stress and dysregulation of adipokines such as leptin. It has been also observed that fatty liver can occur both in people with a normal body mass index (BMI) (10-24% of the population has fatty liver) and in 95% of adults with obesity. Choline is an essential nutrient for human health, which exerts various physiological functions: 1. It is acetylated to generate acetylcholine, the important neurotransmitter; 2. It is oxidized to pass methyl to S-adenosylmethionine, a universal methyl group donor, which participates in the methylation-dependent biosynthesis of DNA, RNA and protein; 3. It is phosphorylated to synthesize phosphatidylcholine, a major constituent of cell and mitochondrial membranes, which is involved in the mitochondrial bioenergetics regulating lipid and glucose metabolism. In addition, it takes part in the packaging and exporting of triglyceride (TG) in very low-density lipoprotein (VLDL), as well as the solubilizing of bile salts for secretion. Choline deficiency contributes to various disorders in animals and humans, with liver as its main target. Humans deprived of choline have been perceived to develop fatty liver, liver cell death or skeletal muscle damage, which were further proven by another clinical study revealing that patients fed with total parenteral nutrition (TPN) solutions low in choline resulted in TPN-associated liver disease. Growing evidence has suggested certain effects of choline on mitochondrial metabolism. Low choline results in the altered composition of mitochondrial membranes, reduced mitochondrial membrane potential, decreased Adenosine triphosphate production and disturbance in fatty acid β-oxidation in rats fed a choline-deficient diet. This mitochondrial dysfunction has also been linked to the process of the increase of reactive oxygen species (ROS) generation, the loss of mitochondrial membrane potential, cellular apoptosis and hepatocarcinogenesis caused by choline deficiency in rat hepatocytes. However, the specific mechanisms connecting choline, DNA methylation and metabolic diseases, such as non-alcoholic fatty liver disease (NAFLD), remain to be evidently described. Excessive energy substrates available to the hepatocytes can potentially result in cellular steatosis with the increasing generation of free fatty acids (FFA) and ROS, which, in turn, will lead to mitochondrial dysfunction inseparably linked with oxidative stress. This is fundamental to the development of dietary-induced NAFLD or TPN-associated liver disease under unbalanced nutrients distress and can potentially lead to steatohepatitis, fibrosis and cirrhosis in the liver. Considering those mechanisms, hence it is interesting to study whether supplementation of choline could have a potential benefit in NAFLD patients. Choline has been shown to decrease lipoprotein oxidation, generation of inflammatory mediators and reactive oxygen species, maintain lipid and glucose homeostasis and help in the repair of mitochondrial membrane. Patients with NAFLD exhibit increased levels of hepatic cytochrome P450-2E1 and thiobarbituric acid reactants, which are markers of lipid peroxidation. Oxidative stress has been demonstrated in animal and human studies to be a significant factor, responsible for causing progression of NAFLD to NASH. In this respect, it may be regarded as an important second hit. Oxidative stress in fatty liver arises because of excessive fatty acid oxidation resulting in an increase release of reactive oxygen species. Another study demonstrated that, total lipid peroxidation products as represented by TBARS were significantly higher among patients with NAFLD as compared to patients with either chronic viral hepatitis or healthy controls. This suggests that the occurrence of high plasma concentration of products of lipid peroxidation is a unique phenomenon in patients with NAFLD and not only a byproduct of any inflammation, because TBARS was lower among patients with chronic viral hepatitis who had high degree of necroinflammation. Leptin, an important regulatory energy hormone, is released from adipocytes and may play a role in the development of liver steatosis. High levels of serum leptin have been reported in patients with NAFLD. Although the underlying mechanisms of leptin in NAFLD are incompletely understood, it has been suggested that it affects fat deposition, fibrogenesis, and inflammation in the liver of patients with NAFLD. In NAFLD, the dysregulation of adipokines, including leptin, mediate insulin resistance through reduced insulin signaling, increased fatty acid concentrations in the liver, and promote steatosis.In addition to hyperinsulinemia, a feature of insulin resistance is the stimulatory effect on the leptin gene, which causes the release of leptin in a vicious cycle.


Recruitment information / eligibility

Status Recruiting
Enrollment 100
Est. completion date February 1, 2024
Est. primary completion date November 1, 2023
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 18 Years to 65 Years
Eligibility Inclusion Criteria: 1. Adult Patients from 18 to 65 years. 2. Gender: both males and females (age and sex matched in both groups). 3. Patients diagnosed with NAFLD via ultrasound (hepatic steatosis observation on ultrasound). 4. Treatment free from choline supplementation for the past 3 months prior starting the therapeutic regimen. Exclusion Criteria: 1. Other liver diseases as viral hepatitis (B or C) 2. Alcohol consumption more than 40 g per week for the past 12 months, and life-time cumulative consumption more than 100 kg. 3. Autoimmune liver disease 4. Malignancy of any nature. 5. Any systemic failure (cardiovascular, renal or respiratory) 6. Patients with major psychiatric illness. 7. Pregnant or lactating women. 8. Diabetes mellitus .

Study Design


Related Conditions & MeSH terms


Intervention

Dietary Supplement:
Phosphatidyl Choline
conventional management + phosphatidyl choline tablets

Locations

Country Name City State
Egypt Tropical Medicine Department Cairo

Sponsors (1)

Lead Sponsor Collaborator
Ain Shams University

Country where clinical trial is conducted

Egypt, 

References & Publications (16)

Bahrami M, Cheraghpour M, Jafarirad S, Alavinejad P, Asadi F, Hekmatdoost A, Mohammadi M, Yari Z. The effect of melatonin on treatment of patients with non-alcoholic fatty liver disease: a randomized double blind clinical trial. Complement Ther Med. 2020 Aug;52:102452. doi: 10.1016/j.ctim.2020.102452. Epub 2020 May 23. — View Citation

Buchman AL. The addition of choline to parenteral nutrition. Gastroenterology. 2009 Nov;137(5 Suppl):S119-28. doi: 10.1053/j.gastro.2009.08.010. Review. — View Citation

Canbakan B, Tahan V, Balci H, Hatemi I, Erer B, Ozbay G, Sut N, Hacibekiroglu M, Imeryuz N, Senturk H. Leptin in nonalcoholic fatty liver disease. Ann Hepatol. 2008 Jul-Sep;7(3):249-54. — View Citation

Corbin KD, Zeisel SH. Choline metabolism provides novel insights into nonalcoholic fatty liver disease and its progression. Curr Opin Gastroenterol. 2012 Mar;28(2):159-65. doi: 10.1097/MOG.0b013e32834e7b4b. Review. — View Citation

Guo WX, Pye QN, Williamson KS, Stewart CA, Hensley KL, Kotake Y, Floyd RA, Broyles RH. Mitochondrial dysfunction in choline deficiency-induced apoptosis in cultured rat hepatocytes. Free Radic Biol Med. 2005 Sep 1;39(5):641-50. — View Citation

Hassan K, Bhalla V, El Regal ME, A-Kader HH. Nonalcoholic fatty liver disease: a comprehensive review of a growing epidemic. World J Gastroenterol. 2014 Sep 14;20(34):12082-101. doi: 10.3748/wjg.v20.i34.12082. Review. — View Citation

Lee JH, Kim D, Kim HJ, Lee CH, Yang JI, Kim W, Kim YJ, Yoon JH, Cho SH, Sung MW, Lee HS. Hepatic steatosis index: a simple screening tool reflecting nonalcoholic fatty liver disease. Dig Liver Dis. 2010 Jul;42(7):503-8. doi: 10.1016/j.dld.2009.08.002. Epub 2009 Sep 18. — View Citation

Lockman KA, Baren JP, Pemberton CJ, Baghdadi H, Burgess KE, Plevris-Papaioannou N, Lee P, Howie F, Beckett G, Pryde A, Jaap AJ, Hayes PC, Filippi C, Plevris JN. Oxidative stress rather than triglyceride accumulation is a determinant of mitochondrial dysfunction in in vitro models of hepatic cellular steatosis. Liver Int. 2012 Aug;32(7):1079-92. doi: 10.1111/j.1478-3231.2012.02775.x. Epub 2012 Mar 19. — View Citation

Madan K, Bhardwaj P, Thareja S, Gupta SD, Saraya A. Oxidant stress and antioxidant status among patients with nonalcoholic fatty liver disease (NAFLD). J Clin Gastroenterol. 2006 Nov-Dec;40(10):930-5. — View Citation

Mirza MS. Obesity, Visceral Fat, and NAFLD: Querying the Role of Adipokines in the Progression of Nonalcoholic Fatty Liver Disease. ISRN Gastroenterol. 2011;2011:592404. doi: 10.5402/2011/592404. Epub 2011 Aug 28. — View Citation

Mishra A, Younossi ZM. Epidemiology and Natural History of Non-alcoholic Fatty Liver Disease. J Clin Exp Hepatol. 2012 Jun;2(2):135-44. doi: 10.1016/S0973-6883(12)60102-9. Epub 2012 Jul 21. — View Citation

Polyzos SA, Kountouras J, Mantzoros CS. Leptin in nonalcoholic fatty liver disease: a narrative review. Metabolism. 2015 Jan;64(1):60-78. doi: 10.1016/j.metabol.2014.10.012. Epub 2014 Oct 23. Review. — View Citation

Sanyal AJ, Campbell-Sargent C, Mirshahi F, Rizzo WB, Contos MJ, Sterling RK, Luketic VA, Shiffman ML, Clore JN. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology. 2001 Apr;120(5):1183-92. — View Citation

Yesilova Z, Yaman H, Oktenli C, Ozcan A, Uygun A, Cakir E, Sanisoglu SY, Erdil A, Ates Y, Aslan M, Musabak U, Erbil MK, Karaeren N, Dagalp K. Systemic markers of lipid peroxidation and antioxidants in patients with nonalcoholic Fatty liver disease. Am J Gastroenterol. 2005 Apr;100(4):850-5. — View Citation

Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, George J, Bugianesi E. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2018 Jan;15(1):11-20. doi: 10.1038/nrgastro.2017.109. Epub 2017 Sep 20. Review. — View Citation

Zeisel SH. Choline: critical role during fetal development and dietary requirements in adults. Annu Rev Nutr. 2006;26:229-50. Review. — View Citation

* Note: There are 16 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Other Clinical outcome as measured by Hepatic ultrasonography ultrasonography measure the change in liver size at baseline and after 12 weeks. 12 weeks
Other Clinical outcome as measured by Hepatic US ultrasonography measure the change in echogenicity at baseline and after 12 weeks. 12 weeks
Primary effect on Oxidative stress marker as the mean change of Thiobarbituric acid reactive substances level Measured as the mean change in Thiobarbituric acid reactive substances serum level (mmol/µg) at baseline and after 12 weeks of choline supplementation 12 weeks
Secondary effect on Inflammatory status as the mean change in leptin levels Measured by Inflammation marker as the mean change in serum leptin levels (ng/mL) at baseline and after 12 weeks of choline supplementation 12 weeks
See also
  Status Clinical Trial Phase
Recruiting NCT05480696 - Soluble Fibre Supplementation in NAFLD Phase 1
Active, not recruiting NCT02500147 - Metformin for Ectopic Fat Deposition and Metabolic Markers in Polycystic Ovary Syndrome (PCOS) Phase 4
Completed NCT04671186 - Role of Probiotics in Treatment of Pediatric NAFLD Patients by Assessing With Fibroscan N/A
Recruiting NCT05979779 - Ph 2 Study of the Safety and Efficacy of Three HU6 Dose Levels and Placebo in Nonalcoholic Steatohepatitis Phase 2
Recruiting NCT05462353 - Study to Evaluate the Safety, Tolerability, and Efficacy of ASC41 Tablets in Adult Patients With NASH Phase 2
Completed NCT05006885 - ALT-801 in Diabetic and Non-Diabetic Overweight and Obese Subjects With Non-alcoholic Fatty Liver Disease (NAFLD) Phase 1
Completed NCT04117802 - Effects of Maple Syrup on Gut Microbiota Diversity and Metabolic Syndrome N/A
Recruiting NCT04365855 - The Olmsted NAFLD Epidemiology Study (TONES) N/A
Recruiting NCT05618626 - Prevention of NAFLD and CVD Through Lifestyle Intervention N/A
Completed NCT03256526 - 6-week Safety and PD Study in Adults With NAFLD Phase 2
Enrolling by invitation NCT06152991 - Clinical Trial Assessing Godex Carnitine Orotate Complex in Nonalcoholic Fatty Liver Disease Patients for Efficacy Phase 3
Completed NCT03681457 - Evaluation of the Pharmacokinetics of Tropifexor in Subjects With Mild, Moderate, or Severe Hepatic Impairment Compared to Healthy Control Subjects Phase 1
Completed NCT06244550 - Clinical Trials Using HepatoKeeper Herbal Essentials to Treat Non-alcoholic Fatty Liver Disease and Metabolic Factors N/A
Not yet recruiting NCT05120557 - Point-of-care Ultrasound Screening and Assessment of Chronic Liver Diseases and NASH N/A
Completed NCT03060694 - Screening Diabetes Patients for NAFLD With Controlled Attenuation Parameter and Liver Stiffness Measurements
Completed NCT02526732 - Hepatic Inflammation and Physical Performance in Patients With NASH N/A
Recruiting NCT01988441 - The Influence of Autophagy on Fatty Liver
Recruiting NCT01680003 - Hepar-P Study to Evaluate the Safety and Efficacy of a Standardised Extract of Phyllanthus Niruri for the Treatment of Non-alcoholic Fatty Liver Disease Phase 2
Completed NCT01712711 - Helicobacter Pylori Eradication in Diabetic Subjects With Non-alcoholic Fatty Liver Disease Phase 2
Recruiting NCT00941642 - Placebo Controlled Study Using Lovaza as Treatment for Non-Alcoholic Fatty Liver Disease Phase 4