Hemiplegia and/or Hemiparesis Following Stroke Clinical Trial
Official title:
Comparison of Upper Extremity Robotic Rehabilitation Efficiency With Conventional Rehabilitation in Patients With Hemiplegia After Cerebrovascular Event
NCT number | NCT04393480 |
Other study ID # | STKC2019 |
Secondary ID | |
Status | Completed |
Phase | N/A |
First received | |
Last updated | |
Start date | April 14, 2016 |
Est. completion date | April 14, 2019 |
Verified date | May 2020 |
Source | Ege University |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
Comparison of Upper Extremity Robotic Rehabilitation Efficiency with Conventional Rehabilitation in Patients with Hemiplegia after Cerebrovascular Event
Status | Completed |
Enrollment | 37 |
Est. completion date | April 14, 2019 |
Est. primary completion date | April 14, 2019 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years to 85 Years |
Eligibility |
Inclusion Criteria: - Having a single stroke - Being an adult - Having a duration of 4 to 30 months after stroke - A score greater than 16 in mini-mental test - Upper extremity Brunnstrom stage 2 or higher - Being a fluent speaker in Turkish. Exclusion Criteria: - Severe apraxia - Skin ulcers - Multiple cerebrovascular events - Severe decompensated diseases (cardiopulmonary, neurological, orthopedic and psychiatric etc), cardiac pacemakers, severe neuropsychological impairment, - Neglect syndrome - Spasticity greater than 3 in Modified Ashworth Scale - Severe joint contractures - Botulinum toxin-A injection in their upper extremity and dose change in drugs for spasticity in the last 3 months. |
Country | Name | City | State |
---|---|---|---|
Turkey | Sahel Taravati | Izmir | Bornova |
Lead Sponsor | Collaborator |
---|---|
Sahel Taravati, M.D. |
Turkey,
Aisen ML, Krebs HI, Hogan N, McDowell F, Volpe BT. The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke. Arch Neurol. 1997 Apr;54(4):443-6. — View Citation
Bertani R, Melegari C, De Cola MC, Bramanti A, Bramanti P, Calabrò RS. Effects of robot-assisted upper limb rehabilitation in stroke patients: a systematic review with meta-analysis. Neurol Sci. 2017 Sep;38(9):1561-1569. doi: 10.1007/s10072-017-2995-5. Epub 2017 May 24. Review. — View Citation
Chang WH, Kim YH. Robot-assisted Therapy in Stroke Rehabilitation. J Stroke. 2013 Sep;15(3):174-81. doi: 10.5853/jos.2013.15.3.174. Epub 2013 Sep 27. Review. — View Citation
Klamroth-Marganska V, Blanco J, Campen K, Curt A, Dietz V, Ettlin T, Felder M, Fellinghauer B, Guidali M, Kollmar A, Luft A, Nef T, Schuster-Amft C, Stahel W, Riener R. Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial. Lancet Neurol. 2014 Feb;13(2):159-66. doi: 10.1016/S1474-4422(13)70305-3. Epub 2013 Dec 30. — View Citation
Kwakkel G, Kollen BJ, Krebs HI. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair. 2008 Mar-Apr;22(2):111-21. Epub 2007 Sep 17. Review. — View Citation
Lo AC, Guarino PD, Richards LG, Haselkorn JK, Wittenberg GF, Federman DG, Ringer RJ, Wagner TH, Krebs HI, Volpe BT, Bever CT Jr, Bravata DM, Duncan PW, Corn BH, Maffucci AD, Nadeau SE, Conroy SS, Powell JM, Huang GD, Peduzzi P. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med. 2010 May 13;362(19):1772-83. doi: 10.1056/NEJMoa0911341. Epub 2010 Apr 16. Erratum in: N Engl J Med. 2011 Nov 3;365(18):1749. — View Citation
Lum PS, Burgar CG, Shor PC, Majmundar M, Van der Loos M. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil. 2002 Jul;83(7):952-9. — View Citation
Masiero S, Armani M, Ferlini G, Rosati G, Rossi A. Randomized trial of a robotic assistive device for the upper extremity during early inpatient stroke rehabilitation. Neurorehabil Neural Repair. 2014 May;28(4):377-86. doi: 10.1177/1545968313513073. Epub 2013 Dec 6. — View Citation
Nef T., Klamroth-Marganska V., Keller U., Riener R. (2016) Three-Dimensional Multi-degree-of-Freedom Arm Therapy Robot (ARMin). In: Reinkensmeyer D., Dietz V. (eds) Neurorehabilitation Technology. Springer, Cham
Norouzi-Gheidari N, Archambault PS, Fung J. Effects of robot-assisted therapy on stroke rehabilitation in upper limbs: systematic review and meta-analysis of the literature. J Rehabil Res Dev. 2012;49(4):479-96. Review. — View Citation
Oguz H, Dursun E, et al. Tibbi rehabilitasyon: Nobel Tip Kitabevleri; 2004
Özcan O, Arpacioglu O, et al. Nörorehabilitasyon: Günes & Nobel Tip Kitabevleri; 2000
Poli P, Morone G, Rosati G, Masiero S. Robotic technologies and rehabilitation: new tools for stroke patients' therapy. Biomed Res Int. 2013;2013:153872. doi: 10.1155/2013/153872. Epub 2013 Nov 20. Review. — View Citation
Prange GB, Jannink MJ, Groothuis-Oudshoorn CG, Hermens HJ, Ijzerman MJ. Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J Rehabil Res Dev. 2006 Mar-Apr;43(2):171-84. Review. — View Citation
Rosati G, Oscari F, Reinkensmeyer DJ, Secoli R, Avanzini F, Spagnol S, Masiero S. Improving robotics for neurorehabilitation: enhancing engagement, performance, and learning with auditory feedback. IEEE Int Conf Rehabil Robot. 2011;2011:5975373. doi: 10.1109/ICORR.2011.5975373. — View Citation
Takahashi K, Domen K, Sakamoto T, Toshima M, Otaka Y, Seto M, Irie K, Haga B, Takebayashi T, Hachisuka K. Efficacy of Upper Extremity Robotic Therapy in Subacute Poststroke Hemiplegia: An Exploratory Randomized Trial. Stroke. 2016 May;47(5):1385-8. doi: 10.1161/STROKEAHA.115.012520. Epub 2016 Mar 22. — View Citation
Taveggia G, Borboni A, Salvi L, Mulé C, Fogliaresi S, Villafañe JH, Casale R. Efficacy of robot-assisted rehabilitation for the functional recovery of the upper limb in post-stroke patients: a randomized controlled study. Eur J Phys Rehabil Med. 2016 Dec;52(6):767-773. Epub 2016 Jul 13. — View Citation
Teasell R, Bayona N, et al. Background concepts in stroke rehabilitation. Evidence-Based Review of Stroke Rehabilitation. 2008
Teasell R, Foley N, Salter K, Bhogal S, Jutai J, Speechley M. Evidence-Based Review of Stroke Rehabilitation: executive summary, 12th edition. Top Stroke Rehabil. 2009 Nov-Dec;16(6):463-88. doi: 10.1310/tsr1606-463. Review. — View Citation
Tomic TJ, Savic AM, Vidakovic AS, Rodic SZ, Isakovic MS, Rodríguez-de-Pablo C, Keller T, Konstantinovic LM. ArmAssist Robotic System versus Matched Conventional Therapy for Poststroke Upper Limb Rehabilitation: A Randomized Clinical Trial. Biomed Res Int. 2017;2017:7659893. doi: 10.1155/2017/7659893. Epub 2017 Jan 31. — View Citation
Veerbeek JM, Langbroek-Amersfoort AC, van Wegen EE, Meskers CG, Kwakkel G. Effects of Robot-Assisted Therapy for the Upper Limb After Stroke. Neurorehabil Neural Repair. 2017 Feb;31(2):107-121. doi: 10.1177/1545968316666957. Epub 2016 Sep 24. Review. — View Citation
Zhang C, Li-Tsang CW, Au RK. Robotic approaches for the rehabilitation of upper limb recovery after stroke: a systematic review and meta-analysis. Int J Rehabil Res. 2017 Mar;40(1):19-28. doi: 10.1097/MRR.0000000000000204. Review. — View Citation
* Note: There are 22 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Change from baseline hand grip strength at 4th week. | Hand grip strength was measured using a hand dynamometer device(Jamar® Hand Dynamometer - Hydraulic - 200 lb Capacity). The measurements were recorded in kilograms. The higher scores indicates better outcome in hand grip strength. | Up to 4 weeks | |
Primary | Change from baseline hand functions (Minnesota manuel dexterity test) at 4th week. | Manual Dexterity Test is a widely used test which measures the capacity for simple but rapid eye-hand-finger movement. This test includes two parts. The 'placing test' requires the patients to place 58 discs with a diameter of 3.5 cm in the spaces of another set of the same dimensions .The length of the sets requires a wide range of shoulder movements.The 'hand turning test' requires the patient to remove the discs from one set and place them in another, or to reinsert them by removing and turning them. This test was performed for the affected (hemiplegic side) upper limb of the patient (right or left) and the result was recorded in 'seconds'. Short periods show that the result is better. | Up to 4 weeks | |
Primary | Change from baseline hand functions (Purdue peg board) at 4th week. | The Purdue Pegboard Test is a neuropsychological test of manual dexterity and bimanual coordination. The test involves two different abilities: gross movements of arms, hands, and fingers, and fine motor extremity. This test consists of a board with holes and pins that can be placed on them , also washers and nuts that can be attached to the pins. The patient is asked to insert as many pins as possible into the holes in 30 seconds in a straight row using his right hand.The same is then repeated for the left hand. Finally, by giving 1 minute time, it is passed to the stage where the patient inserts pins, nuts and washers by using two hands.The total score of these 3 stages gives the test score. The higher scores in this test shows better results. | Up to 4 weeks | |
Primary | Change from baseline spasticity (Modified Ashworth Scale (MAS)) at 4th week. | The Modified Ashworth Scale is the most universally accepted clinical tool used to measure the increase of muscle tone. This scale is a numerical scale that grades spasticity from 0-4, with 0 being no resistance and 4 being a limb rigid in flexion or extension. The greater scores show increased spasticity and worse results. | Up to 4 weeks | |
Primary | Change from baseline neurophysiological development (Brunnstrom stage) at 4th week. | The Brunnstrom Approach sets out a sequence of stages of recovery from hemiplegia after a stroke, emphasising the synergic pattern of movement which develops during recovery. It consists of six stages assessed separately for the upper limb, hand and lower limb. The higher scores show recovery and better results. | Up to 4 weeks | |
Primary | Change from baseline motor function (Fugl Meyer Assessment (FMA)) at 4th week. | Fugl-Meyer Assessment (FMA) scale is an index to assess the sensorimotor impairment in individuals who have had stroke. The FMA motor assessments for the upper extremity consists of four subsections ( upper extremity, hand wrist, hand, speed/coordination). The total score ranges from 0 to 66, higher scores showing better motor function. | Up to 4 weeks | |
Primary | Change from baseline general function (Functional Independance Measure (FIM)) at 4th week. | The Functional Independence Measure (FIM) is an 18-item measurement tool that explores an individual's physical, psychological and social function. Tasks that are evaluated using the FIM include six self-care activities, bowel and bladder control, transfers, locomotion, communication and social cognition. It is used to assess and grade the functional status of a person based on the level of assistance he or she requires. Grading categories range from "total assistance with helper"(score 0) to "complete independence with no helper"(score 7). The total score that can be obtained from this scale varies between 18-126, higher scores showing better results. | Up to 4 weeks | |
Primary | Change from baseline quality of life (Stroke Specific Quality of Life Scale (SS-QOL)) at 4th week. | The Stroke Specific Quality Of Life scale (SS-QOL) is a patient-centered outcome measure intended to provide an assessment of health-related quality of life (HRQOL) specific to patients with stroke. SS-QOL contains 49 items and 12 fields; mobility, energy, upper limb function, work / production, mental state, self-care, social roles, family roles, vision, language, thinking and personality. Each field consists of at least 3 items, and each item is evaluated on a 5-point Likert scale. Higher scores reflect better function. The total score that can be obtained from SS-QOL varies between 49-245. | Up to 4 weeks | |
Primary | Change from baseline quality of life (Nottingham Extended Activities of Daily Living (NEADL)) at 4th week. | The Nottingham Extended Activities of Daily Living (NEADL scale) comprises 22 questions to measure the independence in the following areas of daily living: mobility, kitchen, domestic and leisure activities. The total score varies between 0-66. Higher scores show better outcome. | Up to 4 weeks | |
Primary | Change from baseline cognitive state (MoCA test) at 4th week. | The Montreal Cognitive Assessment (MoCA) is a brief 30-question test that takes around 10 to 12 minutes to complete and helps assess people for cognitive impairment. Different cognitive functions are evaluated with MoCA. These are attention, memory, concentration, executive functions, language functions, visual structuring skills, abstract thinking, computation and orientation. The score varies between 0 and 30 points and patients who get 21 points and above are considered normal. Higher scores indicate better results. | Up to 4 weeks | |
Primary | Change from baseline emotional state (CES-depression test) at 4th week. | CES-depression test is a quick self-test, consisting of 20 items that measure depressive feelings and behaviours during the past week and one of the most common screening tests for helping an individual to determine his or her depression quotient. With the four-dimensional structure of the scale, depressive symptoms, positive effects, somatic symptoms and difficulties in interpersonal relationships were aimed to be measured. Score ranges from 0 to 60, and high scores indicate depression. |
Up to 4 weeks |
Status | Clinical Trial | Phase | |
---|---|---|---|
Terminated |
NCT03811275 -
Task or Virtual Reality Intervention for Improving UE Function
|
N/A | |
Completed |
NCT04498429 -
Effect of Integrated Cueing on Functional Transfers in Chronic Stroke Survivors
|
N/A | |
Completed |
NCT03738813 -
Upper Limb Treatment With "Gloreha Aria" in the Hemiplegic Patients
|
N/A | |
Withdrawn |
NCT06461013 -
The Effect of Blood Flow Restriction Training on Lower Limb Motor Function in Stroke Patients With Hemiplegia
|
N/A | |
Completed |
NCT04268641 -
Evaluation of Positioning Protocols on a Wheelchair in Hemiplegic Patients
|
N/A |