Clinical Trials Logo

Clinical Trial Summary

Osteoporosis is a chronic, systemic and the most frequently metabolic bone disease, characterized by low bone mass and microarchitectural remodeling of bone, which results in a greater fragility of the bone and risk of fracture. With the purpose of explaining the patophysiological mechanisms responsible for osteoporosis, it is necessary to determine the factors that influence on the activity and differentiation of osteoblasts and osteoclasts, as well as their dynamic change depending on the use of an appropriate treatment. According to the recommendations of the International Association for osteoporosis (the National Osteoporosis Fondation- NOF) the treatment of osteoporosis includes pharmacological and non-pharmacological treatment of. Pharmacological includes a range of different drug, where the bisphosphonates, non-hormonal antiresorptive drugs, present gold standard in the treatment of postmenopausal osteoporosis . Non-pharmacological treatment implies the daily physical activity and the specific exercise program, for the purpose of slowing or stopping the loss of bone mass, improve balance, and reduce the risk of falling and fractures. It is known that the mechanical loading of the bone has to be strong enough to achieve the effect of osteogenesis. The load due to the long bones of gravity and the tension force produced by the muscular activity, are the natural stimulus for maintenance of bone mass and muscle strength. This can be achieved by practice involving the activities in which the net mass of the body constitutes an additional load (so-called. "Weight-bearing exercises"), as well as exercise resistance from. Exercise with one's own mass include actions to counter gravity in an upright standing position, and then may be a stronger (high-impact) collides with the substrate (e.g., jumping) and the lower (low-impact) collides with the substrate (e.g., walking). Aerobic exercise, especially walking, is the most common type of intervention because of the ease administration and safety. Resistance training is another effective type of exercises that can affect the maintenance or improvement of bone mineral density, with the most frequently applied with the combination of the dynamic resistance exercises that engage multiple joints, large groups of muscles, and the burden on the hips and the spine. In order to strength training, with the aim of maintaining and stimulating bone mineral density had the best effect, it is necessary to include the basic principles of specificity, load and progression. Training should be directed to the adaptation of a specific part of the body, should be sufficiently intense to and beyond the common load, and a variety of progressive enough. Progression loads should be slow and gradual to avoid injury. We assumed that this type of exercise can be achieved by changing the activity of serum matrix metalloproteinases. It has been proven that in the process of remodeling of the extracellular matrix of the bone, matrix-metalloproteinases play an important role, both, the occurrence of bone as well as in pathological processes of bone resorption . Also, it is known that metalloproteinases, particularly the MMP-2 and MMP-9 play a significant role in the development of skeletal muscle recovery from injury or remodeling of the same after exercise.Taking into account the results of the latest studies on the role of metalloproteinases in the development and remodeling of bone, also and muscle, we assumed that the value of metalloproteinases could serve as markers for early assessment of treatment response of patients with osteoporosis. In our study, we will follow the changes of serum levels of metalloproteinases as well as tissue inhibitor of matrix metalloproteinases 1 (TIMP-1) in the serum of patients with postmenopausal osteoporosis, which have prescribed bisphosphonates, before and after application to the specifically designed exercise program . A functional genetic polymorphisms (PM), by modulating the expression of the MMP can be associated with a differential response to the application of our patients of the same exercise program. Specifically designed exercise program in patients with osteoporosis, which affects the increase in BMD and muscle strength, can be associated with a specific MMP genotyp . In our research we will follow the influence of polymorphisms of the mentioned metalloproteinases on the efficacy of the treatment (the specifically designed exercise program ) in patients with postmenopausal osteoporosis.


Clinical Trial Description

Osteoporosis is a chronic, systemic and the most frequently metabolic bone disease, characterized by low bone mass and microarchitectural remodeling of bone, which results in a greater fragility of the bone and risk of fracture. With the purpose of explaining the patophysiological mechanisms responsible for osteoporosis, it is necessary to determine the factors that influence on the activity and differentiation of osteoblasts and osteoclasts, as well as their dynamic change depending on the use of an appropriate treatment. According to the recommendations of the International Association for osteoporosis (the National Osteoporosis Fondation- NOF) the treatment of osteoporosis includes pharmacological and non-pharmacological treatment of. Pharmacological includes a range of different drug, where the bisphosphonates, non-hormonal antiresorptive drugs, present gold standard in the treatment of postmenopausal osteoporosis . Non-pharmacological treatment implies the daily physical activity and the specific exercise program, for the purpose of slowing or stopping the loss of bone mass, improve balance, and reduce the risk of falling and fractures. It is known that the mechanical loading of the bone has to be strong enough to achieve the effect of osteogenesis. The load due to the long bones of gravity and the tension force produced by the muscular activity, are the natural stimulus for maintenance of bone mass and muscle strength. This can be achieved by practice involving the activities in which the net mass of the body constitutes an additional load (so-called. "Weight-bearing exercises"), as well as exercise resistance from. Exercise with one's own mass include actions to counter gravity in an upright standing position, and then may be a stronger (high-impact) collides with the substrate (e.g., jumping) and the lower (low-impact) collides with the substrate (e.g., walking). Aerobic exercise, especially walking, is the most common type of intervention because of the ease administration and safety. Resistance training is another effective type of exercises that can affect the maintenance or improvement of bone mineral density, with the most frequently applied with the combination of the dynamic resistance exercises that engage multiple joints, large groups of muscles, and the burden on the hips and the spine. In order to strength training, with the aim of maintaining and stimulating bone mineral density had the best effect, it is necessary to include the basic principles of specificity, load and progression. Training should be directed to the adaptation of a specific part of the body, should be sufficiently intense to and beyond the common load, and a variety of progressive enough. Progression loads should be slow and gradual to avoid injury. We assumed that this type of exercise can be achieved by changing the activity of serum matrix metalloproteinases. It has been proven that in the process of remodeling of the extracellular matrix of the bone, matrix-metalloproteinases play an important role, both, the occurrence of bone as well as in pathological processes of bone resorption . Also, it is known that metalloproteinases, particularly the MMP-2 and MMP-9 play a significant role in the development of skeletal muscle recovery from injury or remodeling of the same after exercise.Taking into account the results of the latest studies on the role of metalloproteinases in the development and remodeling of bone, also and muscle, we assumed that the value of metalloproteinases could serve as markers for early assessment of treatment response of patients with osteoporosis. In our study, we will follow the changes of serum levels of metalloproteinases as well as tissue inhibitor of matrix metalloproteinases 1 (TIMP-1) in the serum of patients with postmenopausal osteoporosis, which have prescribed bisphosphonates, before and after application to the specifically designed exercise program . A functional genetic polymorphisms (PM), by modulating the expression of the MMP can be associated with a differential response to the application of our patients of the same exercise program. Specifically designed exercise program in patients with osteoporosis, which affects the increase in BMD and muscle strength, can be associated with a specific MMP genotyp . In our research we will follow the influence of polymorphisms of the mentioned metalloproteinases on the efficacy of the treatment (the specifically designed exercise program ) in patients with postmenopausal osteoporosis. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03816449
Study type Interventional
Source Institut za Rehabilitaciju Sokobanjska Beograd
Contact
Status Completed
Phase N/A
Start date January 1, 2018
Completion date November 30, 2019