Antioxidant Role of the Lutein in Preterm Newborn Clinical Trial
Official title:
Evaluation of the Antioxidant Activity of Lutein/Zeaxanthin Early Administered to Premature Newborns
Verified date | October 2020 |
Source | Sooft Italia |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
Premature birth is the most common cause of mortality, morbidity and disability. Premature infants have a higher risk of developing damage in the eyes (retinopathy of prematurity ROP), in the central nervous system (intraventricular hemorrhage IVH), in the lungs (bronchial pulmonary dysplasia BPD), in the gut (NEC) and infections. Oxidative stress has been implicated in various capacities, in the etiology of these conditions. Lutein and Zeaxanthin are powerful anti-oxidants and commonly assimilated with different foods. Lutein and Zeaxanthin are present at level of umbilical cord, in the breast milk (particularly in colostrum) and pass the placental barrier. Concerning supplementations, the lutein presents, for its specific characteristics, a high bioavailability after oral administration. In the last few years, there have been more and more studies which have shown that lutein could constitute a valid and important preventive and protective factor against certain diseases related to oxidative stress. The preparations of lutein and zeaxanthin have never pointed out in the human being (included in the term newborn) adverse or toxic effects. This spontaneous / non-commercial pilot study involves the administration of a dietary supplement containing lutein / zeaxanthin, because the healthcare structures need to identify a natural antioxidant product that can reduce the incidence of serious diseases related to oxidative stress in the perinatal period. This study aims to evaluate if the administration of lutein in watery solution will reduce the rate of free radicals in preterm infants.
Status | Withdrawn |
Enrollment | 0 |
Est. completion date | October 11, 2019 |
Est. primary completion date | October 11, 2019 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 24 Weeks to 32 Weeks |
Eligibility | Inclusion Criteria: - Newborns with a body weight at birth = 1.500 grams and/or gestational age = 32 weeks - Male and female newborns - Newborns whose parents want to sign the informed consent - Informed consent Exclusion Criteria: - Informed consent is not signed - Infants with a body weight at birth = 1.500 gramms and/or gestational age > 32 weeks - Infants hospitalized after 36 hours of life - Infants with Ophthalmologic diseases - Infants with severe malformations |
Country | Name | City | State |
---|---|---|---|
Italy | Fondazione Poliambulanza Istituto Ospedaliero | Brescia | |
Italy | Azienda Ospedaliera Universitaria Padova | Padova | Italia |
Italy | University Hospital Perugia | Perugia | |
Italy | Azienda Ospedaliera Le Scotte Siena | Siena | Italia |
Lead Sponsor | Collaborator |
---|---|
Sooft Italia | Fondazione Poliambulanza Istituto Ospedaliero, University Hospital Padova, University Hospital Perugia, University of Siena |
Italy,
Age-Related Eye Disease Study Research Group. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophth — View Citation
Alberti A, Bolognini L, Macciantelli D, et al. The radical cation of N,N-dimethyl-para-phenylendiamine: a possible indicator of oxidative stress in biological samples. Res Chem Intermed 2000; 26:253-267
Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem. 1996 Jul 15;239(1):70-6. — View Citation
Bonn D. Keeping the stork at bay until the time is right. Lancet. 1998 Feb 21;351(9102):576. — View Citation
Broekmans WM, Berendschot TT, Klöpping-Ketelaars IA, de Vries AJ, Goldbohm RA, Tijburg LB, Kardinaal AF, van Poppel G. Macular pigment density in relation to serum and adipose tissue concentrations of lutein and serum concentrations of zeaxanthin. Am J Cl — View Citation
Cardinault N, Gorrand JM, Tyssandier V, Grolier P, Rock E, Borel P. Short-term supplementation with lutein affects biomarkers of lutein status similarly in young and elderly subjects. Exp Gerontol. 2003 May;38(5):573-82. — View Citation
Cohen, J. (1969). Statistical power analysis for the behavioural sciences. New York: Academic Press
During A, Dawson HD, Harrison EH. Carotenoid transport is decreased and expression of the lipid transporters SR-BI, NPC1L1, and ABCA1 is downregulated in Caco-2 cells treated with ezetimibe. J Nutr. 2005 Oct;135(10):2305-12. — View Citation
Fanaris, Bel BO, Guidettic E et al. Ruolo della Luteina nella prevenzione delle patologie oculari nel neonato. Rivista Italiana di Medicina Pediatrica 2006;numero speciale:51-53
Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007 May;39(2):175-91. — View Citation
Fokkelman K, Haase E, Stevens J, Idikio H, Korbutt G, Bigam D, Cheung PY. Tissue-specific changes in glutathione content of hypoxic newborn pigs reoxygenated with 21% or 100% oxygen. Eur J Pharmacol. 2007 May 7;562(1-2):132-7. Epub 2007 Feb 8. — View Citation
Franco MC, Akamine EH, Rebouças N, Carvalho MH, Tostes RC, Nigro D, Fortes ZB. Long-term effects of intrauterine malnutrition on vascular function in female offspring: implications of oxidative stress. Life Sci. 2007 Jan 30;80(8):709-15. Epub 2006 Nov 11. — View Citation
Gerardi G, Usberti M, Martini G, Albertini A, Sugherini L, Pompella A, Di LD. Plasma total antioxidant capacity in hemodialyzed patients and its relationships to other biomarkers of oxidative stress and lipid peroxidation. Clin Chem Lab Med. 2002 Feb;40(2):104-10. — View Citation
Giuseppe Buonocore, Monica Tei, Serafina Perrone. Lutein as protective agent against neonatal oxidative stress. Journal of Pediatric and Neonatal Individualized Medicine 2014;3(2):e030244.
Gossage CP, Deyhim M, Yamini S, Douglass LW, Moser-Veillon PB. Carotenoid composition of human milk during the first month postpartum and the response to beta-carotene supplementation. Am J Clin Nutr. 2002 Jul;76(1):193-7. — View Citation
Granado F, Olmedilla B, Blanco I. Nutritional and clinical relevance of lutein in human health. Br J Nutr. 2003 Sep;90(3):487-502. Review. — View Citation
Jackson JG, Eric L, Lien A, Sharon J, White B, Nicholas J, Bruns C, Charles F, Kuhlman A. Major carotenoids in mature human milk: longitudinal and diurnal patterns. The Journal of Nutritional Biochemistry 1998 Jan;9(1):2-7.
Jewell VC, Mayes CB, Tubman TR, Northrop-Clewes CA, Thurnham DI. A comparison of lutein and zeaxanthin concentrations in formula and human milk samples from Northern Ireland mothers. Eur J Clin Nutr. 2004 Jan;58(1):90-7. — View Citation
Jewell VC, Northrop-Clewes CA, Tubman R, Thurnham DI. Nutritional factors and visual function in premature infants. Proc Nutr Soc. 2001 May;60(2):171-8. Review. — View Citation
Khachik F, de Moura FF, Chew EY, Douglass LW, Ferris FL 3rd, Kim J, Thompson DJ. The effect of lutein and zeaxanthin supplementation on metabolites of these carotenoids in the serum of persons aged 60 or older. Invest Ophthalmol Vis Sci. 2006 Dec;47(12):5 — View Citation
Khachik F, London E, de Moura FF, Johnson M, Steidl S, Detolla L, Shipley S, Sanchez R, Chen XQ, Flaws J, Lutty G, McLeod S, Fowler B. Chronic ingestion of (3R,3'R,6'R)-lutein and (3R,3'R)-zeaxanthin in the female rhesus macaque. Invest Ophthalmol Vis Sci — View Citation
Khachik F, Spangler CJ, Smith JC Jr, Canfield LM, Steck A, Pfander H. Identification, quantification, and relative concentrations of carotenoids and their metabolites in human milk and serum. Anal Chem. 1997 May 15;69(10):1873-81. — View Citation
Kiely M, Cogan PF, Kearney PJ, Morrissey PA. Concentrations of tocopherols and carotenoids in maternal and cord blood plasma. Eur J Clin Nutr. 1999 Sep;53(9):711-5. — View Citation
Kopsell DA, Lefsrud MG, Kopsell DE, Wenzel AJ, Gerweck C, Curran-Celentano J. Spinach cultigen variation for tissue carotenoid concentrations influences human serum carotenoid levels and macular pigment optical density following a 12-week dietary interven — View Citation
Krinsky NI, Landrum JT, Bone RA. Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu Rev Nutr. 2003;23:171-201. Epub 2003 Feb 27. Review. — View Citation
Krinsky NI. Possible biologic mechanisms for a protective role of xanthophylls. J Nutr. 2002 Mar;132(3):540S-542S. Review. — View Citation
Kvansakul J, Rodriguez-Carmona M, Edgar DF, Barker FM, Köpcke W, Schalch W, Barbur JL. Supplementation with the carotenoids lutein or zeaxanthin improves human visual performance. Ophthalmic Physiol Opt. 2006 Jul;26(4):362-71. — View Citation
Landrum JT, Bone RA, Joa H, Kilburn MD, Moore LL, Sprague KE. A one year study of the macular pigment: the effect of 140 days of a lutein supplement. Exp Eye Res. 1997 Jul;65(1):57-62. — View Citation
Leung AK, Siu TO, Chiu AS, Robson WL, Larsen TE. Serum carotene concentrations in normal infants and children. Clin Pediatr (Phila). 1990 Oct;29(10):575-8; discussion 579-80. — View Citation
Lorenzoni F, Giampietri M, Ferri G, Lunardi S, Madrigali V, Battini L, Boldrini A, Ghirri P. Lutein administration to pregnant women with gestational diabetes mellitus is associated to a decrease of oxidative stress in newborns. Gynecol Endocrinol. 2013 Oct;29(10):901-3. doi: 10.3109/09513590.2013.808329. Epub 2013 Jun 28. — View Citation
Lutein and zeaxanthin. Monograph. Altern Med Rev. 2005 Jun;10(2):128-35. — View Citation
Mercer JS, Erickson-Owens DA, Graves B, Haley MM. Evidence-based practices for the fetal to newborn transition. J Midwifery Womens Health. 2007 May-Jun;52(3):262-72. Review. — View Citation
Nakamura H, Lee Y, Uetani Y, Kitsunezuka Y, Shimabuku R, Matsuo T. Effects of phototherapy on serum unbound bilirubin i icteric newborn infants. Biol Neonate. 1981;39(5-6):295-9. — View Citation
Nolan J, O'Donovan O, Kavanagh H, Stack J, Harrison M, Muldoon A, Mellerio J, Beatty S. Macular pigment and percentage of body fat. Invest Ophthalmol Vis Sci. 2004 Nov;45(11):3940-50. — View Citation
Oostenbrug GS, Mensink RP, Al MD, van Houwelingen AC, Hornstra G. Maternal and neonatal plasma antioxidant levels in normal pregnancy, and the relationship with fatty acid unsaturation. Br J Nutr. 1998 Jul;80(1):67-73. — View Citation
Perrone S, Longini M, Marzocchi B, Picardi A, Bellieni CV, Proietti F, Rodriguez A, Turrisi G, Buonocore G. Effects of lutein on oxidative stress in the term newborn: a pilot study. Neonatology. 2010;97(1):36-40. doi: 10.1159/000227291. Epub 2009 Jul 7. — View Citation
Perrone S, Tei M, Longini M, Santacroce A, Turrisi G, Proietti F, Felici C, Picardi A, Bazzini F, Vasarri P, Buonocore G. Lipid and protein oxidation in newborn infants after lutein administration. Oxid Med Cell Longev. 2014;2014:781454. doi: 10.1155/2014 — View Citation
Provis JM, Penfold PL, Cornish EE, Sandercoe TM, Madigan MC. Anatomy and development of the macula: specialisation and the vulnerability to macular degeneration. Clin Exp Optom. 2005 Sep;88(5):269-81. Review. — View Citation
Rajendran V, Pu YS, Chen BH. An improved HPLC method for determination of carotenoids in human serum. J Chromatogr B Analyt Technol Biomed Life Sci. 2005 Sep 25;824(1-2):99-106. — View Citation
Reboul E, Abou L, Mikail C, Ghiringhelli O, André M, Portugal H, Jourdheuil-Rahmani D, Amiot MJ, Lairon D, Borel P. Lutein transport by Caco-2 TC-7 cells occurs partly by a facilitated process involving the scavenger receptor class B type I (SR-BI). Bioch — View Citation
Richer S, Stiles W, Statkute L, Pulido J, Frankowski J, Rudy D, Pei K, Tsipursky M, Nyland J. Double-masked, placebo-controlled, randomized trial of lutein and antioxidant supplementation in the intervention of atrophic age-related macular degeneration: t — View Citation
Rodriguez-Carmona M, Kvansakul J, Harlow JA, Köpcke W, Schalch W, Barbur JL. The effects of supplementation with lutein and/or zeaxanthin on human macular pigment density and colour vision. Ophthalmic Physiol Opt. 2006 Mar;26(2):137-47. — View Citation
Santosa S, Jones PJ. Oxidative stress in ocular disease: does lutein play a protective role? CMAJ. 2005 Oct 11;173(8):861-2. — View Citation
Schweigert FJ, Bathe K, Chen F, Büscher U, Dudenhausen JW. Effect of the stage of lactation in humans on carotenoid levels in milk, blood plasma and plasma lipoprotein fractions. Eur J Nutr. 2004 Feb;43(1):39-44. Epub 2004 Jan 6. — View Citation
Shao A, Hathcock JN. Risk assessment for the carotenoids lutein and lycopene. Regul Toxicol Pharmacol. 2006 Aug;45(3):289-98. Epub 2006 Jun 30. Review. — View Citation
Shoji H, Koletzko B. Oxidative stress and antioxidant protection in the perinatal period. Curr Opin Clin Nutr Metab Care. 2007 May;10(3):324-8. Review. — View Citation
Sommerburg O, Keunen JE, Bird AC, van Kuijk FJ. Fruits and vegetables that are sources for lutein and zeaxanthin: the macular pigment in human eyes. Br J Ophthalmol. 1998 Aug;82(8):907-10. — View Citation
Sommerburg O, Meissner K, Nelle M, Lenhartz H, Leichsenring M. Carotenoid supply in breast-fed and formula-fed neonates. Eur J Pediatr. 2000 Jan-Feb;159(1-2):86-90. — View Citation
Thürmann PA, Schalch W, Aebischer JC, Tenter U, Cohn W. Plasma kinetics of lutein, zeaxanthin, and 3-dehydro-lutein after multiple oral doses of a lutein supplement. Am J Clin Nutr. 2005 Jul;82(1):88-97. — View Citation
Trevithick-Sutton CC, Foote CS, Collins M, Trevithick JR. The retinal carotenoids zeaxanthin and lutein scavenge superoxide and hydroxyl radicals: a chemiluminescence and ESR study. Mol Vis. 2006 Sep 30;12:1127-35. — View Citation
Tyssandier V, Reboul E, Dumas JF, Bouteloup-Demange C, Armand M, Marcand J, Sallas M, Borel P. Processing of vegetable-borne carotenoids in the human stomach and duodenum. Am J Physiol Gastrointest Liver Physiol. 2003 Jun;284(6):G913-23. Epub 2003 Jan 10. — View Citation
van Leeuwen R, Boekhoorn S, Vingerling JR, Witteman JC, Klaver CC, Hofman A, de Jong PT. Dietary intake of antioxidants and risk of age-related macular degeneration. JAMA. 2005 Dec 28;294(24):3101-7. — View Citation
Vento M, Asensi M, Sastre J, García-Sala F, Pallardó FV, Viña J. Resuscitation with room air instead of 100% oxygen prevents oxidative stress in moderately asphyxiated term neonates. Pediatrics. 2001 Apr;107(4):642-7. — View Citation
Vento M, Asensi M, Sastre J, Lloret A, García-Sala F, Viña J. Oxidative stress in asphyxiated term infants resuscitated with 100% oxygen. J Pediatr. 2003 Mar;142(3):240-6. Erratum in: J Pediatr. 2003 Jun;142(6):616. — View Citation
Yanoff M and Duker i.S (2005) "Ophthalmology" Edizione italiana ed 2003 ristampa 2005, Antonio Delfino Editore medicina-scienze, volume 1, cap 1.3
Yeum KJ, Ferland G, Patry J, Russell RM. Relationship of plasma carotenoids, retinol and tocopherols in mothers and newborn infants. J Am Coll Nutr. 1998 Oct;17(5):442-7. — View Citation
* Note: There are 56 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Change of the lutein's antioxidant power, after early oral administration in premature newborns | Biological antioxidant potential (micromol/L) will be analyzed as marker of the antioxidant power. This marker will be tested at birth (0 day) by blood sampling from umbilical vein, while at 15 days and 30 days by peripheral blood | 0 day - 15 days - 30 days | |
Primary | Change of the premature newborns' oxidative stress, after early oral administration of the lutein | Total hydroperoxide (Ucarr) will be analyzed as marker of the oxidative stress. This marker will be tested at birth (0 day) by blood sampling from umbilical vein, while at 15 days and 30 days by peripheral blood | 0 day - 15 days - 30 days |