Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT00372112
Other study ID # B2C108562
Secondary ID
Status Completed
Phase Phase 2
First received September 4, 2006
Last updated March 7, 2018
Start date November 3, 2006
Est. completion date May 10, 2007

Study information

Verified date March 2018
Source GlaxoSmithKline
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

The compound GW642444 has previously been found to be well tolerated with no significant side effects in subjects with asthma and healthy volunteers. This study will assess the safety and tolerability of GW642444 in subjects with COPD in order to obtain information to support dosing in a broader population of subjects with COPD


Description:

A multicentre, randomised, placebo-controlled, double-blind, 4-arm parallel-group, 2-week study to evaluate the safety, tolerability, pharmacodynamics and pharmacokinetics of GW642444H (100 administered once daily in the morning via DISKUS™ dry-powder inhaler) compared with SEREVENT (salmeterol) (50mcg administered twice daily via DISKUS dry-powder inhaler) and placebo in subjects with moderate COPD.


Recruitment information / eligibility

Status Completed
Enrollment 68
Est. completion date May 10, 2007
Est. primary completion date May 1, 2007
Accepts healthy volunteers No
Gender All
Age group 40 Years to 80 Years
Eligibility Inclusion criteria:

- females must be of non-childbearing potential

- moderately severe COPD

Exclusion criteria:

- Subjects with a main diagnosis of asthma

- subjects with poorly controlled COPD

- subjects with significant heart, renal, endocrine, psychiatric, immunological or neurological disease.

Study Design


Related Conditions & MeSH terms


Intervention

Drug:
GW642444
GW642444H
Other:
Placebo
Placebo administered twice daily

Locations

Country Name City State
Australia GSK Investigational Site Camperdown New South Wales
Australia GSK Investigational Site Nedlands Western Australia
Bulgaria GSK Investigational Site Ruse
Bulgaria GSK Investigational Site Sofia
Bulgaria GSK Investigational Site Sofia
Germany GSK Investigational Site Geesthacht Schleswig-Holstein
Germany GSK Investigational Site Hannover Niedersachsen
Germany GSK Investigational Site Weinheim Baden-Wuerttemberg
Netherlands GSK Investigational Site Breda
Netherlands GSK Investigational Site Hoorn
New Zealand GSK Investigational Site Auckland
New Zealand GSK Investigational Site Tauranga
Romania GSK Investigational Site Bucharest
Romania GSK Investigational Site Iasi

Sponsors (1)

Lead Sponsor Collaborator
GlaxoSmithKline

Countries where clinical trial is conducted

Australia,  Bulgaria,  Germany,  Netherlands,  New Zealand,  Romania, 

Outcome

Type Measure Description Time frame Safety issue
Primary Number of Participants With Any Adverse Event (AE) or Serious Adverse Event (SAE) An AE is defined as any untoward medical occurrence in a participant, temporally associated with the use of a medicinal product, whether or not considered related to the medicinal product. An SAE is defined as any untoward medical occurrence that, at any dose, results in death, is life-threatening, requires hospitalization or prolongation of existing hospitalization, results in disability/incapacity, or is a congenital anomaly/birth defect, may jeopardize the participant or may require medical or surgical intervention to prevent one of the other outcomes listed in this definition. Up to Follow-up (17 days)
Secondary Change From Baseline in Pre-dose Weighted Mean Heart Rate (HR) Derived From 28.5 Hour (h) Ambulatory Blood Pressure Monitoring (ABPM) at Day 7 and 14 HR was measured using 28.5h ABPM on Day 1, Day 7 and Day 14. Baseline was defined as the pre-dose weighted mean of Day 1. Weighted mean was calculated by calculating the area under curve (AUC) of measurements made pre-dose on each day, and then dividing by the relevant time interval. AUC was calculated using the trapezoidal rule. The weighted mean change from Baseline was the average AUC minus Baseline (AAUCMB). Baseline (Day 1, pre-dose) up to Day 14
Secondary Change From Baseline in 0-4 h Weighted Mean HR Derived From 28.5 h ABPM at Day 1, 2, 7, 8, 14 and 15 HR was measured using 28.5 h ABPM on Day 1 (continued till Day 2), Day 7 (continued till Day 8) and Day 14 (continued till Day 15). Baseline was defined as the pre-dose weighted mean of Day 1. Weighted mean was calculated by calculating the AUC of measurements made 0-4 h post-dose on Day 1, 2, 7, 8, 14 and 15 and then dividing by the relevant time interval. AUC was calculated using the trapezoidal rule. The weighted mean change from Baseline was the AAUCMB. Baseline (Day 1, pre-dose) up to Day 15
Secondary Change From Baseline in 0-24 h Weighted Mean HR Derived From 28.5 ABPM at Day 7 and 14 HR was measured using 28.5 h ABPM on Day 1, Day 7 and Day 14. Baseline was defined as the pre-dose weighted mean of Day 1. Weighted mean was calculated by calculating the AUC of measurements made 0-24 h post-dose on Day 7 and 14, and then dividing by the relevant time interval. AUC was calculated using the trapezoidal rule. The weighted mean change from Baseline was the AAUCMB. Baseline (Day 1, pre-dose) up to Day 15
Secondary Change From Baseline in Maximum HR During 0-4 h Derived From 28.5 h ABPM at Day 1, 2, 7, 8, 14 and 15 HR was measured using 28.5 h ABPM on Day 1 (continued till Day 2), Day 7 (continued till Day 8) and Day 14 (continued till Day 15). For the calculation of 0-4 h maximum change from Baseline, measurements post-dose up to 6 h (actual time) was included. Baseline was defined as the pre-dose weighted mean of Day 1. Maximum change from Baseline was calculated by subtracting the Baseline value (weighted mean pre-dose Day 1) from the maximum assessment value (during 0-4 h) of the individual post-Baseline time points. Baseline (Day 1, pre-dose) up to Day 15
Secondary Mean Weighted Mean HR at 0-4 h, Weighted Mean HR at 0-24 h and Maximum HR at 0-4 h Derived From 28.5 h ABPM HR was measured using 28.5 h ABPM. Weighted mean HR at 0-4 h was obtained from measurements made over 0-4 h post-dose on Day 1, 2, 7, 8, 14 and 15. Weighted mean HR at 0-24 h was obtained from measurements made 0-24 h post-dose on Day 1, 7 and 14. Maximum HR at 0-4 h was obtained from measurements made over 0-4 h post-dose on Day 1, 2, 7, 8, 14 and 15. Baseline was defined as the pre-dose weighted mean of Day 1. Day 1 up to Day 15
Secondary Mean Hourly HR 0-24 h at Day 1, 7 and 14 HR was measured using 28.5 h ABPM. The assessments were analyzed hourly as 0-1 h, 1-2 h, 2-3 h, 3-4 h, 4-5 h, 5-6 h, 6-7 h, 7-8 h, 8-9 h, 9-10 h, 10-11 h, 11-12 h, 12-13 h, 13-14 h, 14-15 h, 15-16 h, 16-17 h, 17-18 h, 18-19 h, 19-20 h, 20-21 h, 21-22 h, 22-23 h and 23-24 h at Day 1, Day 7 and Day 14. Day 1 up to Day 14
Secondary Mean Maximum Hourly HR 0-24 h at Day 1, 7 and 14 HR was measured using 28.5 h ABPM. The assessments for maximum HR were analyzed hourly as 0-1 h, 1-2 h, 2-3 h, 3-4 h, 4-5 h, 5-6 h, 6-7 h, 7-8 h, 8-9 h, 9-10 h, 10-11 h, 11-12 h, 12-13 h, 13-14 h, 14-15 h, 15-16 h, 16-17 h, 17-18 h, 18-19 h, 19-20 h, 20-21 h, 21-22 h, 22-23 h and 23-24 h at Day 1, Day 7 and Day 14. Day 1 up to Day 14
Secondary Change From Baseline in Weighted Mean Systolic and Diastolic Blood Pressure (SBP and DBP) Derived From 28.5 h ABPM Over Time BP was measured using 28.5 h ABPM. Weighted mean SBP and DBP at 0-4 h post-dose was obtained on Day 1, 2, 7, 8, 14 and 15. Weighted mean SBP and DBP at 0-24 h post-dose was obtained on Day 1, 7 and 14. Weighted mean was calculated by calculating the AUC, and then dividing by the relevant time interval. AUC was calculated using the trapezoidal rule. Baseline was defined as the weighted mean SBP and DBP on pre-dose Day 1. The weighted mean change from Baseline was the AAUCMB. Data is reported for change from Baseline in weighted mean pre-dose values at Day 7 and Day 14; change from Baseline in weighted mean over 0-4 h at Day 1, 2, 7, 8, 14 and 15; and change from Baseline in weighted mean over 0-24 h at Day 1, 7 and 14. Baseline (Day 1, pre-dose) up to Day 15
Secondary Change From Baseline in Maximum SBP and Minimum DBP Derived From 28.5 h ABPM Over Time BP was measured using 28.5 h ABPM. Maximum SBP and minimum DBP at 0-4 h post-dose was obtained on Day 1, 2, 7, 8, 14 and 15. For the calculation of 0-4 h maximum/minimum change from Baseline, measurements post-dose up to 6 h (actual time) was included. Baseline was defined as the pre-dose weighted mean of Day 1 for SBP and DBP. Maximum/minimum change from Baseline was calculated by subtracting the Baseline value (weighted mean pre-dose Day 1 for SBP and DBP) from the maximum/minimum assessment value (during 0-4 h) of the individual post-Baseline time points. Baseline (Day 1, pre-dose) up to Day 15
Secondary Mean Weighted Mean SBP and DBP at 0-4 h, Weighted Mean SBP and DBP at 0-24 h and Maximum SBP and Minimum DBP at 0-4 h Derived From 28.5 h ABPM BP was measured using 28.5 h ABPM. Weighted mean SBP and DBP at 0-4 h post-dose was obtained on Day 1, 2, 7, 8, 14 and 15. Weighted mean SBP and DBP at 0-24 h post-dose was obtained on Day 1, 7 and 14. Maximum SBP and minimum DBP at 0-4 h post-dose was obtained on Day 1, 2, 7, 8, 14 and 15. Baseline was defined as the pre-dose weighted mean of Day 1. Day 1 up to Day 15
Secondary Change From Baseline in QTc by Federicia's Method (F) and QTc Bazett's Method (B) Values at Pre-dose, Weighted Mean 0-4 h and Maximum 0-4 h Derived From 12-lead Electrocardiogram (ECG) Over Time A 12-lead ECG was recorded on Day 1, 2, 7, 8, 14 and 15 with the participant in a supine position having rested in that position for at least 5 min before each reading. A total of 3 measurements separated by at least 1 min was taken at each visit and the mean recorded. The Baseline for pre-dose QTcF and QTcB measurements was the pre-dose assessment on Day 1. Weighted mean at 0-4 h for QTcF and QTcB was calculated by calculating the AUC, and then dividing by the relevant time interval. AUC was calculated using the trapezoidal rule. The weighted mean change from Baseline was the AAUCMB. The change from Baseline in maximum QTcF and QTcB at 0-4 h was calculated by subtracting the Baseline (pre-dose Day 1) value from the individual post-Baseline values. Baseline (Day 1, pre-dose) up to Day 15
Secondary Mean QTcF and QTcB Values at Pre-dose, Weighted Mean 0-4 h and Maximum 0-4 h Derived From 12-lead ECG Over Time A 12-lead ECG was recorded on Day 1, 2, 7, 8, 14 and 15 with the participant in a supine position having rested in that position for at least 5 min before each reading. A total of 3 measurements separated by at least 1 min was taken at each visit and the mean recorded. The pre-dose QTcF and QTcB assessment was done at Day 1, 7 and 14. Weighted mean at 0-4 h for QTcF and QTcB at Day 1, 2, 7, 8, 14 and 15 was calculated by calculating the AUC, and then dividing by the relevant time interval. AUC was calculated using the trapezoidal rule. The maximum QTcF and QTcB at 0-4 h was obtained at Day 1, 2, 7, 8, 14 and 15. Day 1 up to Day 15
Secondary Mean of Hourly Maximums QTcF and QTcB Derived From 24 h 3-lead Holter ECG Monitoring Over Time A holter monitor is a machine that continuously records the heart's electrical activity. A 3-lead holter ECG monitoring device was used. The monitor was worn for 24 h during normal activity to record the ECG intervals. The assesmment for hourly maximums QTcF and QTcB was done on Day 1, Day 7 and Day 14. For each h of holter monitoring the maximum QTcF for that h was calculated using the maximum QT and mean HR of that given h as Maximum QT divided by (60/Mean HR)^1/3. For each h of holter monitoring the maximum QTcB for that h was calculated using the maximum QT and mean HR of that given h as Maximum QT divided by (60/Mean HR)^1/2. Day 1 up to Day 14
Secondary Number of Events of Supra Ventricular Ectopics, Ventricular Ectopics and Ventricular Runs Per 24 h Derived From 3-lead Holter ECG Monitoring Over Time A holter monitor is a machine that continuously records the heart's electrical activity. A 3-lead holter ECG monitoring device was used. The monitor was worn for 24 h during normal activity to record the heart's rhythm. The assessment for the events of supra ventricular ectopics, ventricular ectopics and ventricular runs per 24 h was done on Day 1, Day 7 and Day 14. Day 1 up to Day 14
Secondary Number of Participants With Biochemistry Abnormal Change From Baseline Values Relative to the Normal Range at Day 7 and 14 The parameters of biochemistry with their normal range included: alanine amino transferase ([ALT] 0-48 international units per liter [IU/L]), albumin (32-50 gram [g]/L), alkaline phosphatase ([ALP] 20-125 IU/L), aspartate amino transferase ([AST] 0-42 IU/L), calcium (2.12-2.56 millimole [mmol]/L, chloride (95-108 mmol/L), creatine kinase ([CK] 0-235 IU/L), creatinine (44-124 micromole [µmol]/L), direct bilirubin (0-6 µmol/L), gamma glutamyl transferase ([GGT] 0-65 IU/L), glucose (3.9-6.9 mmol/L), lactate dehydrogenase ([LDH] 0-250 IU/L), potassium (3.5-5.3 mmol/L), sodium (135-146 mmol/L), total bilirubin (0-22 µmol/L), total protein (60-85 g/L), urea (2.5-9 mmol/L) and uric acid (250-510 µmol/L). The assessments were performed on Day 1, Day 7 and Day 14. Baseline was defined as the assessment done on Day 1. Only those parameters for which at least one value of abnormality (to low or to high) change from Baseline, relative to normal ranges were reported are summarized. Baseline (Day 1) up to Day 14
Secondary Number of Participants With Hematology Abnormal Change From Baseline Values Relative to the Normal Range at Day 7 and 14 The parameters of biochemistry with their normal range included: basophils (0-0.2 giga cells [GI]/L), eosinophils (0.05-0.55 GI/L), haematocrit (0.41-0.5 ratio), hemoglobin (138-172 g/L), lymphocytes (0.85-4.1 GI/L), mean corpuscle hemoglobin ([MCH] 27-33 picogram [pg]), mean corpuscle hemoglobin concentration ([MCHC] 320-360 g/L), mean corpuscle volume ([MCV] 80-100 femtoliter [fl]), monocytes (0.2-1.1 GI/L), segmented neutrophils (1.8-8 GI/L), total neutrophils (1.8-8 GI/L), platelet count (130-400 GI/L), red blood cell ([RBC] 4.4-5.8 trillion cells [TI]/L) count and white blood cell ([WBC] 3.8-10.8 GI/L) count. The assessments were performed on Day 1, Day 7 and Day 14. Baseline was defined as the assessment done on Day 1. Only those parameters for which at least one value of abnormality (to low or to high) change from Baseline, relative to normal ranges were reported are summarized. Baseline (Day 1) up to Day 14
Secondary Change From Baseline in Forced Expiratory Volume in One Second (FEV1) at Pre-dose, Weighted Mean FEV1 at 0-4 h and Maximum FEV1 0-4 h Over Time FEV1 is defined as the amount of air which can be forcibly exhaled from the lungs in the first second of a forced exhalation. FEV1 was assessed pre-dose at Day 1, 2, 7, 8, 14 and 15. FEV1 was assessed post-dose at Day 1, 2, 7, 8 and 14. Lung function test of FEV1 was performed at the approximately same time at each visit in the morning and highest of the 3 measurements were recorded. Baseline was defined as the assessment done on pre-dose Day 1. The change from Baseline pre-dose was calculated by subtracting the Baseline value (pre-dose Day 1) from the individual post Baseline (Day 2, 7, 8, 14 and 15) values. Weighted mean was calculated by calculating the AUC, and then dividing by the relevant time interval. AUC was calculated using the trapezoidal rule. The weighted mean FEV1 0-4 h change from Baseline was the AAUCMB obtained at Day 1, 2, 7, 8, 14 and 15. The maximum FEV1 0-4 h change from Baseline was obtained at Day 1, Day 2, Day 7, Day 8, Day 14 and Day 15. Baseline (Day 1, pre-dose) up to Day 15
Secondary Mean FEV1 Weighted Mean FEV1 at 0-4 h and Maximum FEV1 at 0-4 h Over Time FEV1 is defined as the amount of air which can be forcibly exhaled from the lungs in the first second of a forced exhalation. FEV1 was assessed pre-dose and post-dose at Day 1, 2, 7, 8, 14 and 15. Lung function test of FEV1 was performed at the approximately same time at each visit in the morning and highest of the 3 measurements were recorded. Weighted mean was calculated by calculating the AUC, and then dividing by the relevant time interval. AUC was calculated using the trapezoidal rule. The weighted mean FEV1 0-4 h and maximum FEV1 0-4 h was obtained at Day 1, 2, 7, 8, 14 and 15. Day 1 up to Day 15
Secondary Change From Baseline in Weighted Mean FEV1 Over 22- 24 h on Days 1, 7 and 14 FEV1 is defined as the amount of air which can be forcibly exhaled from the lungs in the first second of a forced exhalation. Lung function test of FEV1 was performed at the approximately same time at each visit in the morning and highest of the 3 measurements were recorded. Weighted mean was calculated by calculating the AUC, and then dividing by the relevant time interval. AUC was calculated using the trapezoidal rule. The weighted mean FEV1 over 22-24 h was obtained at Day 1, Day 7 and Day 14 which was recorded up to Day 2, Day 8 and Day 15. Baseline was defined as the assessment on Day 1 pre-dose. Change from Baseline was calculated by subtracting the Baseline (Day 1, pre-dose) value from the individual post Baseline (Day 1, Day 7 and Day 14) values. Baseline (Day 1, pre-dose) up to Day 15
Secondary Mean Morning and Evening Peak Expiratory Flow Rate (PEFR) Over Time PEF is a measure of lung function and measures how fast a person can breathe out. It was measured using a peak flow meter by the participants and recorded on daily record cards each day in the morning and evening from Screening up to Follow-up. The morning measurements were performed prior to the participant taking the morning dose of study medication or rescue medication. The evening measurements were performed prior to the participant taking the evening dose of study medication or rescue medication. The highest of the 3 values of morning and evening PEF were recorded on the diary card. The mean of 7 days of each morning and evening measurements were reported for the Run-in Week, Week 1, Week 2 and Follow-up. Up to Follow-up (Day 17)
Secondary Mean Use of Rescue Medication Over Period Ipratropium bromide was provided as the rescue medication. The use of rescue medication was recorded by the participants on daily record cards each day in the morning and evening from Screening up to Follow-up. The mean of 7 days (puffs per 24 h) were reported for the Run-in Week, Week 1, Week 2 and Follow-up. Up to Follow-up (Day 17)
Secondary Number of Participants With Rescue Free Days Ipratropium bromide was provided as the rescue medication. The use of rescue medication was recorded by the participants on daily record cards each day in the morning and evening from Screening up to Follow-up. The percentage of rescue free days during the Run-in week, Week 1, Week 2 and Follow-up Week were assessed. Data is reported for number of participants with < 20%, >=20 to <40%, >=40 to <60%, >=60 to <80% and >=80% rescue free days. Up to Follow-up (Day 17)
Secondary Change From Baseline in Pre-dose Fasting Glucose and Potassium at Day 7 and 14 Blood samples were collected at pre-dose on Day 1, Day 7 and Day 14. Baseline was defined as the assessment done on pre-dose, Day 1. Change from Baseline was calculated by subtracting the Baseline (Day 1, pre-dose) value from the individual post Baseline (Day 7 and Day 14) values. Baseline (Day 1, pre-dose) up to Day 14
Secondary Change From Baseline in Weighted Mean Glucose and Potassium 0-4 h, Maximum Glucose 0-4 h and Minimum Potassium 0-4 h Over Time Blood samples were collected at pre-dose and 4 h post-dose on Day 1, Day 2, Day 7, Day 8, Day 14 and Day 15. Weighted mean was calculated by calculating the AUC, and then dividing by the relevant time interval. AUC was calculated using the trapezoidal rule. Baseline was defined as the assessment on Day 1 pre-dose. The weighted mean change from Baseline was the AAUCMB. Change from Baseline in maximum glucose 0-4 h and minimum potassium 0-4 h was calculated by subtracting the Baseline (Day 1, pre-dose) value from the individual post Baseline (Day 1 to Day 15) values. Baseline (Day 1, pre-dose) up to Day 15
Secondary Mean Weighted Mean 0-4 h of Glucose and Potassium, Maximum Glucose 0-4 h and Minimum Potassium 0-4 h Over Time Blood samples were collected at pre-dose and 4 h post-dose on Day 1, Day 2, Day 7, Day 8, Day 14 and Day 15. Weighted mean was calculated by calculating the AUC, and then dividing by the relevant time interval. AUC was calculated using the trapezoidal rule. Day 1 up to Day 15
Secondary AUC of GW642444H Over 0 to 4 h (AUC [0-4]) on Day 1, 7 and 14 Blood samples were collected on Day 1 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose), Day 7 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose) and Day 14 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose). The pre-dose sample was collected within 5 min prior to study medication administration. The AUC over 4 h as AUC from zero (pre-dose) to 2 h post-dose (AUC [0-2]), AUC from zero (pre-dose) to 4 h post-dose (AUC [0-4]) and AUC from zero (pre-dose) to time of last quantifiable concentration (AUC [0-t]) was determined using the linear trapezoidal rule for increasing concentrations and the logarithmic trapezoidal rule for decreasing concentrations. Day 1 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose), Day 7 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose) and Day 14 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose)
Secondary Maximum Concentration (Cmax) of GW642444H at Day 1, 7 and 14 Blood samples were collected on Day 1 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose), Day 7 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose) and Day 14 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose). The pre-dose sample was collected within 5 min prior to study medication administration. The first occurrence of the Cmax was determined directly from the raw concentration-time data. Day 1 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose), Day 7 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose) and Day 14 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose)
Secondary Time to Maximum Concentration (Tmax) and Time of Last Quantifiable Concentration (Tlast) of GW642444H at Day 1, 7 and 14 Blood samples were collected on Day 1 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose), Day 7 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose) and Day 14 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose). The pre-dose sample was collected within 5 min prior to study medication administration. The time at which Cmax was observed and tlast was determined directly from the raw concentration-time data. Day 1 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose), Day 7 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose) and Day 14 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose)
Secondary AUC (0-4) of CCI2189 at Day 1, 7 and 14 CCI2189 is a counterion of GW642444H. Blood samples were collected on Day 1 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose), Day 7 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose) and Day 14 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose). The pre-dose sample was collected within 5 min prior to study medication administration. The AUC (0-4) was determined using the linear trapezoidal rule for increasing concentrations and the logarithmic trapezoidal rule for decreasing concentrations. Day 1 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose), Day 7 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose) and Day 14 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose)
Secondary Cmax of CCI2189 at Day 1, 7 and 14 CCI2189 is a counterion of GW642444H. Blood samples were collected on Day 1 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose), Day 7 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose) and Day 14 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose). The pre-dose sample was collected within 5 min prior to study medication administration. The first occurrence of the Cmax was determined directly from the raw concentration-time data. Day 1 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose), Day 7 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose) and Day 14 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose)
Secondary AUC (0-4) of GW630200 and GSK932009 at Day 1, 7 and 14 GW630200 and GSK932009 are metabolites of GW642444H. Blood samples were collected on Day 1 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose), Day 7 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose) and Day 14 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose). The pre-dose sample was collected within 5 min prior to study medication administration. The AUC (0-4) was determined using the linear trapezoidal rule for increasing concentrations and the logarithmic trapezoidal rule for decreasing concentrations. Day 1 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose), Day 7 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose) and Day 14 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose)
Secondary Cmax of GW630200 and GSK932009 at Day 1, 7 and 14 GW630200 and GSK932009 are metabolites of GW642444H. Blood samples were collected on Day 1 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose), Day 7 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose) and Day 14 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose). The pre-dose sample was collected within 5 min prior to study medication administration. The first occurrence of the Cmax was determined directly from the raw concentration-time data. Day 1 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose), Day 7 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose) and Day 14 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose)
Secondary Time to Maximum Concentration (Tmax) of CCI2189, GW630200 and GSK932009 at Day 1, 7 and 14 GW630200 and GSK932009 are metabolites of GW642444H. CCI2189 is a counterion of GW642444H. Blood samples were collected on Day 1 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose), Day 7 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose) and Day 14 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose). The pre-dose sample was collected within 5 min prior to study medication administration. The time at which Cmax was observed was determined directly from the raw concentration-time data. Day 1 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose), Day 7 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose) and Day 14 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose)
Secondary AUC (0-4) of Salmeterol at Day 1, 7 and 14 Blood samples were collected on Day 1 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose), Day 7 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose) and Day 14 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose). The pre-dose sample was collected within 5 min prior to study medication administration. The AUC (0-4) was determined using the linear trapezoidal rule for increasing concentrations and the logarithmic trapezoidal rule for decreasing concentrations. Day 1 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose), Day 7 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose) and Day 14 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose)
Secondary Cmax of Salmeterol at Day 1, 7 and 14 Blood samples were collected on Day 1 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose), Day 7 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose) and Day 14 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose). The pre-dose sample was collected within 5 min prior to study medication administration. The first occurrence of the Cmax was determined directly from the raw concentration-time data. Day 1 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose), Day 7 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose) and Day 14 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose)
Secondary Tmax of Salmeterol at Day 1, 7 and 14 Blood samples were collected on Day 1 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose), Day 7 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose) and Day 14 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose). The pre-dose sample was collected within 5 min prior to study medication administration. The time at which Cmax was observed was determined directly from the raw concentration-time data. Day 1 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose), Day 7 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose) and Day 14 (pre-dose, 5 min, 1 h, 2 h and 4 h post-dose)
See also
  Status Clinical Trial Phase
Completed NCT05043428 - The Roles of Peers and Functional Tasks in Enhancing Exercise Training for Adults With COPD N/A
Completed NCT00528996 - An Efficacy and Safety Study to Compare Three Doses of BEA 2180 BR to Tiotropium and Placebo in the Respimat Inhaler. Phase 2
Completed NCT03740373 - A Study to Assess the Pulmonary Distribution of Budesonide, Glycopyrronium and Formoterol Fumarate Phase 1
Completed NCT05402020 - Effectiveness of Tiotropium + Olodaterol Versus Inhaled Corticosteroids (ICS) + Long-acting β2-agonists (LABA) Among COPD Patients in Taiwan
Completed NCT05393245 - Safety of Tiotropium + Olodaterol in Chronic Obstructive Pulmonary Disease (COPD) Patients in Taiwan: a Non-interventional Study Based on the Taiwan National Health Insurance (NHI) Data
Completed NCT04011735 - Re-usable Respimat® Soft MistTM Inhaler Study
Enrolling by invitation NCT03075709 - The Development, Implementation and Evaluation of Clinical Pathways for Chronic Obstructive Pulmonary Disease (COPD) in Saskatchewan
Completed NCT03764163 - Image and Model Based Analysis of Lung Disease Early Phase 1
Completed NCT00515268 - Endotoxin Challenge Study For Healthy Men and Women Phase 1
Completed NCT04085302 - TARA Working Prototype Engagement Evaluation: Feasibility Study N/A
Completed NCT03691324 - Training of Inhalation Technique in Hospitalized Chronic Obstructive Pulmonary Disease (COPD) Patients - a Pilot Study N/A
Completed NCT02236611 - A 12-week Study to Evaluate the Efficacy and Safety of Umeclidinium 62.5 Microgram (mcg) Compared With Glycopyrronium 44 mcg in Subjects With Chronic Obstructive Pulmonary Disease (COPD) Phase 4
Completed NCT00153075 - Flow Rate Effect Respimat Inhaler Versus a Metered Dose Inhaler Using Berodual in Patients With Chronic Obstructive Pulmonary Disease (COPD) Phase 4
Completed NCT01017952 - A Study to Evaluate Annual Rate of Exacerbations and Safety of 3 Dosage Strengths of Fluticasone Furoate (FF)/GW642444 Inhalation Powder in Subjects With Chronic Obstructive Pulmonary Disease (COPD) Phase 3
Completed NCT01009463 - A Study to Evaluate the Efficacy and Safety of Fluticasone Furoate (FF)/GW642444 Inhalation Powder in Subjects With Chronic Obstructive Pulmonary Disease (COPD) Phase 3
Completed NCT04882124 - Study of Effect of CSJ117 on Symptoms, Pharmacodynamics and Safety in Patients With COPD Phase 2
Completed NCT02853123 - Effect of Tiotropium + Olodaterol on Breathlessness in COPD Patients Phase 4
Completed NCT02619357 - Method Validation Study to Explore the Sensitivity of SenseWear Armband Gecko for Measuring Physical Activity in Subjects With Chronic Obstructive Pulmonary Disease (COPD) & Asthma Phase 1
Recruiting NCT05858463 - High Intensity Interval Training and Muscle Adaptations During PR N/A
Not yet recruiting NCT05032898 - Acute Exacerbation of Chronic Obstructive Pulmonary Disease Inpatient Registry Study Stage II