Clinical Trials Logo

Clinical Trial Summary

Subjects are being asked to participate in this study because treatment of their disease requires them to receive a stem cell transplant. Stem cells or "mother" cells are the source of normal blood cells and lead to recovery of blood counts after bone marrow transplantation (BMT). Unfortunately, there is not a perfectly matched stem cell donor (like a sister or brother) and the subject's disease is considered rapidly progressive and does not permit enough time to identify another donor (like someone from a registry list that is not their relative). We have, however, identified a close relative of the subject's whose stem cells are not a perfect match, but can be used. However, with this type of donor, there is typically an increased risk of developing graft-versus-host disease (GVHD), a high rate of transplant failure, and a longer delay in the recovery of the immune system.

GVHD is a serious and sometimes fatal side effect of stem cell transplant. GVHD occurs when the new donor cells (graft) recognizes that the body tissues of the patient (host) are different from those of the donor. When this happens, cells in the graft may attack the host organs, primarily the skin, liver, and intestines. The number of occurrences and harshness of severe GVHD depends on several factors, including the degree of genetic differences between the donor and recipient, the intensity of the pre-treatment conditioning regimen, the quantity of transplanted cells, and the recipient's age. In recipients of mismatched family member or matched unrelated donor stem cell transplants, there is a greater risk of GVHD so that 70-90% of recipients of unchanged marrow will develop severe GVHD which could include symptoms such as marked diarrhea, liver failure, or even death.

In an effort to lower the occurrences and severity of graft-versus-host disease in patients and to lower the rate of transplant failure, we would like to specially treat the donor's blood cells to remove cells that are most likely to attack the patient's tissues. This will occur in combination with intense conditioning treatment that the patient will receive before the transplant.


Clinical Trial Description

To participate in this study, the subject will need to have a central line (a thin plastic catheter or tube that is placed during surgery into one of the large veins in the neck or chest).

Also before treatment can begin, we will test the subject's blood for viruses which can cause problems after the transplant.

Before treatment can begin, stem cells will be collected from the donor that has been selected as the best match for the subject. White blood cells will be collected from the donor. The cells will then be mixed with a special protein called a CD34 antibody that binds to the stem cells which will then be separated out from the white blood cells by a special machine called a CLINIMACs CD34 Reagent System in the laboratory. This is an investigational and experimental device which is not approved by the FDA. Although this device is not approved for use in this country, it has been in use for years and is approved in other countries. The stem cells will be collected and frozen before we start to give chemotherapy.

TREATMENT PLAN

To prepare the subject's body for transplantation, the subject will be given high dose chemotherapy (also called a conditioning treatment) for 8 days prior to the transplant as follows:

The subject will be given a drug called Ara-C in high doses through the central line every 12 hours starting 8 days before transplant (called day - 8) until 5 days before transplant (called day - 5). Starting one day after receiving the first Ara-C dose (day - 7), we will add a drug called cyclophosphamide once a day to the treatment for the next two days. This will be given in high doses (also through the central line). Also on day - 7, we will add a drug called MESNA. MESNA is used to decrease the side effects caused by cyclophosphamide. After the medication treatment is finished (day - 4), radiation treatment will be given to the entire body twice a day for 4 days. The chemotherapy and radiation treatment will last 8 days. If the subject has abnormal cells in the spinal fluid, 6 extra daily doses of radiation treatment may be given to the head. This would be done before any of the drugs are given and before the subject is admitted for transplant.

NOTE: Depending on the subjects health status, the doctor may decide the subject should not receive Ara-C. If this is a possibility, the doctor will discuss this with the subject.

On the second day of radiation (day -3), the subject will receive CAMPATH-1H as a daily 4-hour IV (intravenous, by vein). The subject will receive this infusion once a day for a total of three days. CAMPATH 1H is a special type of protein called an antibody, that works against certain types of blood cells. CAMPATH 1H is important because it stays active in the body for a long time after infusion, which means it may work longer at preventing GVHD symptoms.

The day after the radiation treatment is completed (day 0), the subject will receive the specially selected donor stem cells. Once in the bloodstream, the cells will go to the bone marrow and should begin to grow. If the subject is at risk for developing GVHD or if the subject begins to develop GVHD, the doctor will prescribe medicines to help prevent or treat this side effect. The doctor will describe these medicines at that time.

To learn more about the way the new cells are growing blood will be taken for research purposes at approximately 3 months, 6 months, 9 months, and a year after the transplant. On day 100, the subject will have the same tests/evaluations the subject has been experiencing since the transplant, however, the subject will also have a bone marrow aspirate (we take a sample of bone marrow to evaluate the disease and GVHD status). For patients who do not develop GVHD, they may have an additional bone marrow aspirate on day 180 (about 2 months after the previous one).

After day 365, the subject will be asked to return to the clinic once a year for evaluations. These evaluations will be similar to the ones the subject had on day 100. ;


Study Design


Related Conditions & MeSH terms

  • Acute Lymphoblastic Leukemia
  • Acute Myeloid Leukemia
  • Chronic Myelogenous Leukemia
  • Familial Hemophagocytic Lymphohistiocytosis (FLH)
  • Hemophagocytic Lymphohistiocytosis (HLH)
  • Leukemia
  • Leukemia, Lymphoid
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive
  • Leukemia, Myeloid
  • Leukemia, Myeloid, Acute
  • Lymphohistiocytosis, Hemophagocytic
  • Lymphoma, Non-Hodgkin
  • Lymphoproliferative Disorders
  • Myelodysplastic Syndrome
  • Myelodysplastic Syndromes
  • Non Hodgkins Lymphoma
  • Precursor Cell Lymphoblastic Leukemia-Lymphoma
  • Preleukemia
  • Syndrome
  • Viral-associated Hemophagocytic Syndrome (VAHS)
  • X-linked Lymphoproliferative Disease (XLP)

NCT number NCT00368355
Study type Interventional
Source Baylor College of Medicine
Contact
Status Completed
Phase Phase 2
Start date April 2000
Completion date November 2016

See also
  Status Clinical Trial Phase
Recruiting NCT05400122 - Natural Killer (NK) Cells in Combination With Interleukin-2 (IL-2) and Transforming Growth Factor Beta (TGFbeta) Receptor I Inhibitor Vactosertib in Cancer Phase 1
Recruiting NCT04460235 - Immunogenicity of an Anti-pneumococcal Combined Vaccination in Acute Leukemia or Lymphoma Phase 4
Completed NCT04022785 - PLX51107 and Azacitidine in Treating Patients With Acute Myeloid Leukemia or Myelodysplastic Syndrome Phase 1
Completed NCT03678493 - A Study of FMT in Patients With AML Allo HSCT in Recipients Phase 2
Recruiting NCT05424562 - A Study to Assess Change in Disease State in Adult Participants With Acute Myeloid Leukemia (AML) Ineligible for Intensive Chemotherapy Receiving Oral Venetoclax Tablets in Canada
Terminated NCT03224819 - Study of Emerfetamab (AMG 673) in Adults With Relapsed/Refractory Acute Myeloid Leukemia (AML) Early Phase 1
Completed NCT03197714 - Clinical Trial of OPB-111077 in Patients With Relapsed or Refractory Acute Myeloid Leukaemia Phase 1
Active, not recruiting NCT04070768 - Study of the Safety and Efficacy of Gemtuzumab Ozogamicin (GO) and Venetoclax in Patients With Relapsed or Refractory CD33+ Acute Myeloid Leukemia:Big Ten Cancer Research Consortium BTCRC-AML17-113 Phase 1
Active, not recruiting NCT03844048 - An Extension Study of Venetoclax for Subjects Who Have Completed a Prior Venetoclax Clinical Trial Phase 3
Active, not recruiting NCT04107727 - Trial to Compare Efficacy and Safety of Chemotherapy/Quizartinib vs Chemotherapy/Placebo in Adults FMS-like Tyrosine Kinase 3 (FLT3) Wild-type Acute Myeloid Leukemia (AML) Phase 2
Recruiting NCT04920500 - Bioequivalence of Daunorubicin Cytarabine Liposomes in Naive AML Patients N/A
Recruiting NCT04385290 - Combination of Midostaurin and Gemtuzumab Ozogamicin in First-line Standard Therapy for Acute Myeloid Leukemia (MOSAIC) Phase 1/Phase 2
Recruiting NCT03897127 - Study of Standard Intensive Chemotherapy Versus Intensive Chemotherapy With CPX-351 in Adult Patients With Newly Diagnosed AML and Intermediate- or Adverse Genetics Phase 3
Active, not recruiting NCT04021368 - RVU120 in Patients With Acute Myeloid Leukemia or High-risk Myelodysplastic Syndrome Phase 1
Recruiting NCT03665480 - The Effect of G-CSF on MRD After Induction Therapy in Newly Diagnosed AML Phase 2/Phase 3
Completed NCT02485535 - Selinexor in Treating Patients With Intermediate- and High-Risk Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndrome After Transplant Phase 1
Enrolling by invitation NCT04093570 - A Study for Participants Who Participated in Prior Clinical Studies of ASTX727 (Standard Dose), With a Food Effect Substudy at Select Study Centers Phase 2
Recruiting NCT04069208 - IA14 Induction in Young Acute Myeloid Leukemia Phase 2
Recruiting NCT05744739 - Tomivosertib in Relapsed or Refractory Acute Myeloid Leukemia (AML) Phase 1
Recruiting NCT04969601 - Anti-Covid-19 Vaccine in Children With Acute Leukemia and Their Siblings Phase 1/Phase 2