Clinical Trials Logo

Optic Pathway Glioma clinical trials

View clinical trials related to Optic Pathway Glioma.

Filter by:
  • None
  • Page 1

NCT ID: NCT05733572 Recruiting - Clinical trials for Optic Pathway Glioma

Safety and Efficacy of the PAINLESS Nerve Growth Factor CHF6467 in Optic Pathway Glioma (OPG)

NGF-OPG
Start date: June 12, 2023
Phase: Phase 2
Study type: Interventional

Infantile optic pathway glioma (OPG) is generally benign and slow-growing, but due to infiltration and compression of sensitive neuronal structures in the optical pathways, progressive visual loss is a frequent and highly debilitating complication of the condition. Recently, therapeutic strategies aimed at neuroprotection in the visual pathway rather than reducing the size of the tumor have been studied. Nerve growth factor (NGF) is a neurotrophin that acts on peripheral and central neurons by binding with high affinity to the trkANGFR receptor, which has tyrosine kinase activity, and with low affinity to the non-selective pan-neurotrophin receptor p75NTR that regulates signaling through trkANGFR. The effect of NGF on target cells depends on the ratio of these two co-distributed receptors on the cell surface. Recently, two studies have shown that murine NGF can prevent progression of visual damage in OPG patients. These successful exploratory studies (the last of which was a randomized, double-blind, placebo-controlled study) represent a significant reference point in the field of vision loss in OPG patients and provide the basis and rationale for this study using a recombinant form of mutated NGF, painless NGF (CHF6467), which is anticipated to prove devoid of adverse effects related to pain at therapeutic doses. The purpose of this randomised study is to assess the safety and efficacy of multiple doses of painless NGF CHF6467 eye drops on the visual function of children or young adults with optic pathway gliomas, whether or not associated with type 1 neurofibromatosis. This study will include serial assessments of both optical pathway functionality and morphology, using electrophysiological and magnetic resonance imaging (MRI) techniques of the brain. The comparator will be a placebo preparation based on a physiologically balanced salt solution. This comparator has no effect on retinal function and optic nerve, is painless and perfectly tolerated, as reported by numerous clinical studies including that of our group.

NCT ID: NCT04065776 Recruiting - Glioma Clinical Trials

Evaluation of Hippocampal-Avoidance Using Proton Therapy in Low-Grade Glioma

Start date: August 28, 2019
Phase: N/A
Study type: Interventional

Low-grade gliomas (LGGs) are the most common brain tumors in children, and a subset of these tumors are treated definitively with focal radiation therapy (RT). These patients often survive for many years after receiving RT and experience late deficits in memory. Verbal recall is an important measure of memory and is associated with other important functional outcomes, such as problem-solving, independence of every-day functioning, and quality of life. Decline in memory, as measured by verbal recall, is associated with RT dose to the hippocampi. Therefore, this phase II study investigates the feasibility of reducing RT doses to the hippocampi (i.e., hippocampal avoidance [HA]) by using proton therapy for midline or suprasellar LGGs. Primary Objective: - To determine the feasibility of HA with proton therapy in suprasellar or midline LGGs. Feasibility will be established if 70% of plans meet the first or second dose constraints shown below. 1. First priority RT dose constraints for bilateral hippocampi: volume receiving 40 CGE (V40CGE) ≤ 25%, dose to 100% of Hippocampus (D100%) ≤ 5CGE. 2. Second priority RT dose constraints for bilateral hippocampi: V40CGE ≤ 35%, D100% ≤ 10 CGE. Secondary Objectives: - To estimate the 3-year event-free-survival (EFS) for LGGs treated with HA. - To estimate the change in California Verbal Learning Test short-term delay (CVLT-SD) from baseline to 3 years and from baseline to 5 years - To compare CVLT-SD and Cogstate neurocognitive scores in patients with proton therapy plans that: (1) meet first priority RT dose constraints, (2) meet second priority RT dose constraints but not first priority RT dose constraints, and (3) that did not meet either first or second RT priority dose constraints Exploratory Objectives: - To describe the change in overall cognitive performance from baseline to 3 years and from baseline to 5 years with an age appropriate battery, including gold standard measures shown in the published studies to be sensitive to attention, memory processing speed and executive function that will afford comparison to historical controls. - To characterize longitudinal changes in connection strength within brain networks in the first 3 years after proton therapy and to investigate associations between these changes and neurocognitive performance with focus on the hippocampi. - To correlate the distribution and change in L-methyl-11C-methionine positron emission tomography (MET-PET) uptake to tumor progression and from baseline to 3 years and to investigate whether cases of pseudoprogression exhibit a differential pattern of uptake and distribution compared to cases of true progression after controlling for histology. - To investigate the effect of BRAF alteration, tumor histology and tumor location on PFS and OS in a prospective cohort of patients treated in a homogenous manner. - To investigate whether the methylation profiles of LGGs differ by tumor location (thalamic/midbrain vs. hypothalamic/optic pathway vs. others) and histologies (pilocytic astrocytoma vs. diffuse astrocytoma vs. others), which, in conjunction with specific genetic alterations, may stratify patients into different subgroups and highlight different therapeutic targets. - To record longitudinal measures of circulating tumor DNA (ctDNA) in plasma and correlate these measures with radiographic evidence of disease progression. - To bank formalin-fixed, paraffin-embedded (FFPE)/frozen tumors and whole blood from subjects for subsequent biology studies not currently defined in this protocol. - To quantify and characterize tumor infiltrating lymphocytes (TILs) and to characterize the epigenetics of T cells and the T cell receptor repertoire within the tumor microenvironment. - To estimate the cumulative incidence of endocrine deficiencies, vision loss, hearing loss and vasculopathy after proton therapy and compare these data to those after photon therapy.