View clinical trials related to Oligodendroglioma.
Filter by:Bevacizumab may reduce CNS side effects caused by radiation therapy. This randomized phase II trial is studying how well bevacizumab works in reducing CNS side effects in patients who have undergone radiation therapy to the brain for primary brain tumor, meningioma, or head and neck cancer.
This clinical trial is using EF5 to measure the oxygen level in tumor cells of patients undergoing surgery or surgery biopsy for newly diagnosed supratentorial malignant glioma. Diagnostic procedures using the drug EF5 to measure the oxygen level in tumor cells may help in planning cancer treatment
RATIONALE: Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. PURPOSE: This phase II trial is studying how well temozolomide works in treating patients with newly diagnosed anaplastic oligodendroglioma or mixed oligoastrocytoma.
The purpose of this non-randomized, open-label, multicenter, Phase II, 2-stage design, RESCUE study is to test the hypothesis that continuous 28-day oral dosing (28/28) with dose-intense temozolomide (50 mg/m^2) for up to 12 months may overcome resistance and be effective in the management of adult patients with malignant glioma who have failed following at least 2 cycles (2 months) of conventional 5-day (5/28) cycles of high-dose temozolomide (150-200 mg/m^2).
This phase I trial studies the side effects and best dose of carcinoembryonic antigen-expressing measles virus (MV-CEA) in treating patients with glioblastoma multiforme that has come back. A virus, called MV-CEA, which has been changed in a certain way, may be able to kill tumor cells without damaging normal cells.
This is an open-label, multicenter, phase II trial, assessing the antitumor activity, and safety of temozolomide in combination with O6-BG in patients with temozolomide-resistant anaplastic glioma.
This phase II trial is studying how well giving bevacizumab together with irinotecan works in treating young patients with recurrent, progressive, or refractory glioma, medulloblastoma, ependymoma, or low grade glioma. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Bevacizumab may also stop the growth of glioma by blocking blood flow to the tumor. Drugs used in chemotherapy, such as irinotecan, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving bevacizumab together with irinotecan may kill more tumor cells.
This phase II trial is studying how well VEGF Trap works in treating patients with recurrent malignant or anaplastic gliomas that did not respond to temozolomide. VEGF Trap may stop the growth of malignant or anaplastic gliomas by blocking blood flow to the tumor.
Rationale: Standard therapy for anaplastic oligodendrogliomas and mixed oligoastrocytomas includes radiation and chemotherapy. However, due to the potential long-term central nervous system toxicity from radiation, researchers speculate that it may be better to reserve radiation therapy for progressive disease. In addition, some patients with anaplastic oligodendroglioma and mixed oligoastrocytoma have unusually chemosensitive tumors. Previous research indicates that brain tumor patients with a deletion of the 1p chromosome have a higher response to the chemotherapy drug temozolomide.
Phase 2 trial to explore the efficacy and safety of irinotecan (CPT-11). Also administered at each cycle was zofran/Kytril/Anzemet, decadron, and IV atropine. At each cycle, patient exams and interviews as well as lab results were to help the research team to determine the symptomatic side effects of the treatment. Recorded past toxicities were to be compared with current side effects.