View clinical trials related to Oligodendroglioma.
Filter by:Low-grade glioma (LGG) is a common primary brain tumor in young adults. The infiltrative nature and frequent growth in eloquent area in brain often makes total resection impossible. Until now, no agreement has been achieved on the treatment of LGG without total resection. Post-radiation adjuvant temozolomide (TMZ) is currently the standard of care for high-grade gliomas. Radiotherapy or TMZ is recommended for the treatment of residue low-grade gliomas. However, the efficacy of combined radiotherapy with adjuvant TMZ for residue LGG remains to be defined. In this randomized controlled trial, the investigators will test the hypothesis that radiotherapy with subsequent TMZ chemotherapy is superior to improve the progression-free survival of patients with residue LGG without significant impairment to quality of life compared to radiotherapy alone.
This partially randomized phase I/II trial studies the side effects and the best dose of anti-endoglin monoclonal antibody TRC105 when given together with bevacizumab and to see how well they work in treating patients with glioblastoma multiforme that has come back. Monoclonal antibodies, such as anti-endoglin monoclonal antibody TRC105 and bevacizumab, may find tumor cells and help kill them. Giving anti-endoglin monoclonal antibody TRC105 together with bevacizumab may be an effective treatment for glioblastoma multiforme.
This study is being done to evaluate the toxicity and safety of carboplatin administered by convection enhanced delivery into the tumor in patients with high grade glial neoplasms. This study is a dose escalating study, (the dose of the study drug is increased at set time points). Carboplatin is in a class of drugs known as platinum-containing compounds; it slows or stops the growth of cancer cells in your body. Convection enhanced delivery involves placing one or more catheters into the brain and delivering chemotherapy through those catheters directly into the brain
The purpose of the study is to determine the safety and efficacy of intracranially implanted Carmustine in the treatment of patients with recurrent malignant glioma.
The primary purpose of this phase II clinical trial is to determine the safety and effect on survival of patients autologous dendritic cells pulsed with autologous tumor lysate as a treatment for low-grade glioma patients. Other goals of this study are to determine if the vaccine can cause an immune response against patients' cancer cells and slow the growth of their brain tumors
This partially randomized phase II trial with a safety run-in component studies the side effects and how well bevacizumab given with or without trebananib works in treating patients with brain tumors that have come back (recurrent). Immunotherapy with monoclonal antibodies, such as bevacizumab, may induce changes in the body's immune system and interfere with the ability of tumor cells to grow and spread. Trebananib may stop the growth of tumor cells by blocking blood flow to the tumor. It is not yet known whether giving bevacizumab together with trebananib is more effective than bevacizumab alone in treating brain tumors.
This phase I trial studies the side effects and best schedule of vaccine therapy with or without sirolimus in treating patients with cancer-testis antigen (NY-ESO-1) expressing solid tumors. Biological therapies, such as sirolimus, may stimulate the immune system in different ways and stop tumor cells from growing. Vaccines made from a person's white blood cells mixed with tumor proteins may help the body build an effective immune response to kill tumor cells that express NY-ESO-1. Infusing the vaccine directly into a lymph node may cause a stronger immune response and kill more tumor cells. It is not yet known whether vaccine therapy works better when given with or without sirolimus in treating solid tumors.
This phase II trial studies how well giving hypofractionated radiation therapy together with temozolomide and bevacizumab works in treating patients with high-grade glioblastoma multiforme or anaplastic glioma. Specialized radiation therapy, such as hypofractionated radiation therapy, that delivers a high dose of radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Giving hypofractionated radiation therapy together with temozolomide and bevacizumab may kill more tumor cells.
This is a multicenter study evaluating the safety and tolerability of increasing doses of Toca 511, a retroviral replicating vector, injected into the resection cavity of patients with Grade III or Grade IV Gliomas who have elected to undergo surgical removal of their tumor. Approximately 6 weeks after injection of Toca 511, patients will begin an oral courses of Toca FC, an antifungal agent. These one week courses of Toca FC will be repeated during the approximately 30 week study. Two separate cohorts of patients treated with Toca 511 and Toca FC will also be evaluated with either of the following standard treatments for glioma: lomustine or bevacizumab. After completion of this study, all patients will be eligible for enrollment and encouraged to enter a long-term continuation protocol that enables additional Toca FC treatment cycles to be given, as well as permits the collection of long-term safety and survival data.
This phase II trial studies how well sunitinib malate works in treating younger patients with recurrent, refractory, or progressive malignant glioma or ependymoma. Sunitinib malate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.