View clinical trials related to Non-Hodgkin Lymphoma.
Filter by:This phase II trial studies how well an umbilical cord blood transplant with added sugar works with chemotherapy and radiation therapy in treating patients with leukemia or lymphoma. Giving chemotherapy and total-body irradiation before a donor umbilical cord blood transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. The umbilical cord blood cells will be grown ("expanded") on a special layer of cells collected from the bone marrow of healthy volunteers in a laboratory. A type of sugar will also be added to the cells in the laboratory that may help the transplant to "take" faster.
If you are reading and signing this form on behalf of a potential participant, please note: Any time the words "you," "your," "I," or "me" appear, it is meant to apply to the potential participant. The goal of this clinical research study is to learn if giving genetically changed immune cells, called CAR-NK cells, after chemotherapy will improve the disease in stem cell transplant patients with relapsed (has returned) and/or refractory (has not responded to treatment) B-cell lymphoma or leukemia. Also, researchers want to find the highest tolerable dose of CAR-NK cells to give to patients with relapsed or refractory B-cell lymphoma or leukemia. The safety of this treatment will also be studied. This is an investigational study. The making of and infusion of genetically changed NK cells and the drug AP1903 (if you receive it, explained below) are not FDA approved or commercially available for use in this type of disease. They are currently being used for research purposes only. The chemotherapy drugs in this study (fludarabine, cyclophosphamide, and mesna) are commercially available and FDA approved. Up to 36 patients will take part in this study. All will be enrolled at MD Anderson.
This is a phase I trial with pilot expansion of HLA-haploidentical or HLA-mismatched related donor nicotinamide expanded-natural killer (NAM-NK) cell based therapy for patients with relapsed or refractory multiple myeloma (MM) or relapsed/refractory CD20-positive non-Hodgkin lymphoma (NHL). The primary endpoint of the study is to determine the maximum tolerated dose (MTD) of NAM-NK cells while maintaining safety.
The goal of this project is to conduct a pilot randomized clinical trial (RCT) to evaluate the feasibility of a brief, behavioral intervention to improve recovery following hematopoietic stem cell transplantation (HSCT). Cancer patients who were treated with HSCT will learn behavioral techniques to improve sleep and increase daytime activity with the goal of alleviating insomnia, fatigue, and depression. If the intervention demonstrates evidence of feasibility and acceptability, a future study will test the effects in a larger trial, with the long-term goal of improving the care and quality of life of cancer survivors recovering from HSCT.
The purpose of this study is to find the number of natural killer (NK) cells from non-HLA matched donors that can be safely infused into patients with cancer. NK cells are a form of lymphocytes that defend against cancer cells. NK cells in cancer patients do not work well to fight cancer. In this study, the NK cells are being donated by healthy individuals without cancer who are not "matched" by human leukocyte antigen (HLA) genes to patients. After receiving these NK cells, patients may also be given a drug called ALT803. ALT803 is a protein that keeps NK cells alive, helps them grow in number and supports their cancer-fighting characteristics. HLA-unmatched NK cell infusion is investigational (experimental) because the process has not approved by the Food and Drug Administration (FDA).
This research study is studying Blinatumomab as a possible treatment for Indolent Non-Hodgkin Lymphoma (NHL).
Broadly speaking, the goal of this study is to better understand the influence of chemotherapy treatment on the cognitive and neural mechanisms underlying human behavior. Extant literature lacks diversity in studied cancer populations and treatment protocols, and provides limited understanding of the cognitive abilities that are impaired by chemotherapy. To overcome these limitations, this study will employ a sophisticated battery of tests on an understudied cancer population. Eligible participants will either be patients diagnosed with hematological malignancy (HM) or demographically matched healthy control patients. After HM diagnosis and treatment protocols have been established, patients will be inducted into the longitudinal study comprised of three visits: 1) after diagnosis but prior to chemotherapy treatment (baseline), 2) after one treatment cycle (one month post-baseline), and 3) after three treatment cycles (three months post-baseline). Patients will undergo a test battery designed to measure specific behavioral and neural mechanisms of attention; tests will either be computer-based cognitive tasks or simulated driving tests that immerse patients into virtual driving scenarios. During each test, EEG will be concurrently measured through non-invasive scalp electrophysiology recordings; EEG recordings will reveal underlying neural mechanisms affected by chemotherapy. Additionally, neuropsychological tests of vision, attention, and memory will be administered, as well as questionnaires to evaluate health, mobility, and life space. Finally, blood samples will be collected to examine levels of circulating inflammation-specific proteins typically present in cancer patients. This study will allow us to better understand the mechanisms through which chemotherapy influences cognitive performance. Results from this study will influence the administration of chemotherapy treatments so that patients can continue to receive the highest medical care while maintaining optimal cognitive abilities and quality of life.
Participants who are scheduled to have an endo bronchial ultrasound (EBUS) trans bronchial needle aspiration (TBNA) will provide additional samples. These samples will then be sent to Imperial College London to see whether a cell line can be grown. If growth is successful then the samples will be returned to our pathology department to see if grading is possible and then to compare these results with the previous diagnostic samples. The cell line samples will not be used for patient diagnosis.
This study evaluates ADCT-402 in participants with Relapsed or Refractory B-cell Lineage Non Hodgkin Lymphoma (B-NHL). Participants will participate in a dose escalation phase (Part 1) and dose expansion (Part 2). In Part 2, participants will receive the dose level identified in Part 1.
Current protocols use G-CSF to mobilize hematopoietic progenitor cells from matched sibling and volunteer unrelated donors. Unfortunately, this process requires four to six days of G-CSF injection and can be associated with side effects, most notably bone pain and rarely splenic rupture. BL-8040 is given as a single SC injection, and collection of cells occurs on the same day as BL-8040 administration. This study will evaluate the safety and efficacy of this novel agent for hematopoietic progenitor cell mobilization and allogeneic transplantation based on the following hypotheses: - Healthy HLA-matched donors receiving one injection of BL-8040 will mobilize sufficient CD34+ cells (at least 2.0 x 10^6 CD34+ cells/kg recipient weight) following no more than two leukapheresis collections to support a hematopoietic cell transplant. - The hematopoietic cells mobilized by SC BL-8040 will be functional and will result in prompt and durable hematopoietic engraftment following transplantation into HLA-identical siblings with advanced hematological malignancies using various non-myeloablative and myeloablative conditioning regimens and regimens for routine GVHD prophylaxis. - If these hypotheses 1 and 2 are confirmed after an interim safety analysis of the data, then the study will continue and include recruitment of haploidentical donors.