View clinical trials related to Non-Hodgkin Lymphoma.
Filter by:Background: Aggressive B-cell lymphomas can be cured but people with disease that resists treatment or that returns after treatment have poor outcomes with standard therapies. Indolent B-cell lymphomas are generally incurable with standard therapy and treatment is aimed at controlling symptoms and achieving a durable remissions. Researchers want to see if a combination of drugs can help patients with both aggressive and indolent B-cell lymphomas. Objective: To learn if it is safe and effective to give polatuzumab along with venetoclax, ibrutinib, prednisone, obinutuzumab, and lenalidomide to people with certain B-cell lymphomas. Eligibility: Adults ages 18 and older with relapsed and/or refractory B-cell lymphoma who have had at least one prior cancer treatment. Design: Participants will be screened with: Medical history Physical exam Assessment of how they do their daily activities Blood and urine tests Heart function test Tissue biopsy (if needed) Body imaging scans (may get a contrast agent through an intravenous (IV) catheter) Participants will have a bone marrow aspiration and/or biopsy. A needle will be put into the hipbone. Bone marrow will be removed. Participants may give blood, tissue, saliva, or cheek swab samples. They may have optional biopsies. Screening tests will be repeated during the study. Treatment will be given for up to 6 cycles. Each cycle lasts 21 days. Participants will take venetoclax and prednisone tablets by mouth. They will take ibrutinib and lenalidomide capsules by mouth. They will get obinutuzumab and polatuzumab by IV infusion. They will keep a medicine diary. Participants will visit the clinic 30 days after treatment ends. They will have follow-up visits for 5 years. If needed, they can visit their local doctor instead. They may be contacted by phone, mail, etc., for the rest of their life....
The purpose of this study is to determine if it is possible to treat relapsed or refractory lymphoid malignancies (Non-Hodgkin Lymphoma, Acute Lymphoblastic Leukemia, Chronic Lymphocytic Leukemia) with a new type of T cell-based immunotherapy (therapy that uses the immune system to treat the cancer).
Part 1: Dose Escalation. The primary objective of Part 1 of this study is to evaluate the safety and tolerability of KB-0742 in participants with relapsed or refractory (R/R) solid tumors or non-Hodgkin lymphoma (NHL). Part 2: Cohort Expansion. The primary objective of Part 2 of this study is to further evaluate the safety and tolerability of KB-0742 in defined participant cohorts.
In France, new cancer cases keep on increasing with around 150 000 deaths yearly. Cancer therapy research is constantly evolving. Indeed, several studies explore new treatments or their combination with conventional cancer treatments. But, at the same time, complementary and alternative medicines, as osteopathy, remain little explored upon their role in the combination with conventional therapy. Several studies showed indirect interaction between vagus nerve and cancer. Firstly, vagus nerve regulates homeostasis and immunity by reducing systemic inflammation while maintaining local inflammation and antitumor effects. Secondly, vagus nerve stimulation increases Heart Rate Variability (HRV). Moreover, a higher HRV is associated with an improvement of vital prognosis in cancer patients. Vagus nerve could be stimulated by noninvasive osteopathic manipulations. This prospective, monocentric and randomized study is a collaboration between the Centre Hospitalier d'Avignon and the Institut de Formation en Ostéopathie du Grand Avignon. It focuses on using noninvasive osteopathic mobilizations to stimulate vagus nerve. Indeed, this study aims to evaluate effects of vagus nerve osteopathic stimulations on HRV in patients with lung cancer, colorectal cancer, Non Hodgkin Lymphoma or Multiple Myeloma. More specifically, this study will tell us whether vagus nerve noninvasive osteopathic stimulations induce increase of HRV associated with a decrease of systemic inflammation and an improvement of patient's quality of life.
A study of CTA30X cell injection in the treatment of relapsed or refractory CD19-positive B-line hematological malignancies
This research study is being conducted to treat patients with B-cell lymphoid malignancies. These types of cancers include diffuse large cell (DLBCL) non-Hodgkin's lymphoma (NHL), mantle cell NHL, any indolent B cell NHL (such as follicular, small cell or marginal zone NHL), or chronic lymphocytic leukemia (CLL). Patients with these types of lymphomas have been shown to benefit from peripheral blood stem cell transplantation (PBSCT). PBSCT uses healthy blood stem cells from a donor to replace your diseased or damaged bone marrow. Before undergoing PBSCT, you'll receive chemotherapy and/or radiation to destroy your diseased cells and prepare your body for the donor cells. This is called a "conditioning regimen." Non-myeloablative (NMA) conditioning causes minimal cell death. This research study will look at a course of treatment using NMA conditioning regimen including low dose chemotherapy and low dose radiation as well as rituximab and PBSCT from a compatible donor. The primary aim is to obtain a preliminary estimate of the overall and event-free survival 1 year post-transplant after NMA.
The purpose of this study is to find the maximum dose of huCART19-IL18 cells that is safe for use in humans with CD19+ cancers.
AB-101 is an off-the shelf, allogeneic cell product made of "natural killer" cells, also called NK cells. White blood cells are part of the immune system and NK cells are a type of white blood cell that are known to kill cancer cells. This clinical trial will enroll patients with relapsed/refractory non-Hodgkin lymphoma of B-cell origin and is conducted in two phases. The primary objectives of Phase 1 are as follows: 1) to evaluate the safety of AB-101 given alone or in combination with rituximab (including the DLBCL specific cohort) or in combination with bendamustine and rituximab; 2) to evaluate the potential clinical activity of AB-101 when given in combination with rituximab or in combination with bendamustine and rituximab (combination cohorts only); and 3) to identify the recommended Phase 2 dose (RP2D). The primary objective of Phase 2 is to determine whether AB-101 in combination with rituximab or in combination with bendamustine and rituximab has anti-cancer activity in patients. Patients will be assigned to receive either AB-101 alone as monotherapy, in combination with rituximab (including DLBCL specific cohort) or in combination with bendamustine and rituximab. All patients will receive at least 1 treatment cycle of AB-101, followed by scheduled assessments of overall health and tumor response. Patients receiving AB-101 in combination with rituximab may receive up to 3 additional cycles of treatment. Patients receiving AB-101 in combination with bendamustine and rituximab may receive up to 5 additional cycles of treatment. Patients enrolled into the DLBCL specific cohort receiving AB-101 in combination with rituximab may receive up to 3 cycles of treatment.
INTRODUCTION: Approximately 44% of cancer survivors experience a deteriorated quality of life 5 years after diagnosis due to late onset of complications related to cancer treatments. The objective of the study is to evaluate the incidence rates of treatment-related complications, identify sub-clinical abnormalities and risk factors in patients participating in the PASCA post-treatment program. METHOD: PASCA is a single-center, interventional cohort study of adult patients who received at least chemotherapy and with a complete remission to a testicular germ cell tumor, primary non-metastatic invasive breast carcinoma, high-grade soft tissue sarcoma, osteosarcoma, Ewing's sarcoma, acute myeloid leukemia, Hodgkin's or aggressive non-Hodgkin's lymphoma. Four assessment visits will be scheduled at 1 month (T1), 6 months (T2), 24 months (T3) and 60 months (T4) after completion of treatment. During these visits, 22 complications will be screened and follow-up care will be systematically offered to the health professional concerned by the complication in case of a positive result. The screening will contain the following elements: screening self-questionnaires, quality of life questionnaire, 12 biological parameters, a urinalysis evaluating hematuria, proteinuria, and leukocyturia, a spirometry, an electrocardiogram, 5 tests evaluating physical condition, vital signs and the perimetric measurement between both arms. DISCUSSION: This systematic screening could highlight a number of complications occurring after cancer treatments. Sub-clinical abnormalities and new risk factors could also be identified. This new organization of care could improve the quality of life of adult cancer survivors.
This study investigates whether donors with previous exposure to COVID-19 can pass their immunity by hematopoietic (blood) stem cell transplant (HCT) donation to patients that have not been exposed. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that causes the COVID19 infection. This study may provide critical information for medical decision-making and possible immunotherapy interventions in immunocompromised transplant recipients, who are at high risk for COVID19 severe illness.