View clinical trials related to Neuromuscular Diseases.
Filter by:The aims of the current study are as follow: i) Evaluate the safety, usability, and acute efficiency of a programmable ambulation exoskeleton (KeeogoTM Dermoskeleton System, B-Temia Inc., Quebec, Canada) in patients with neuromuscular disorders, ii) Elaborate recommendations regarding usability criteria for safe and efficient use the device in patients with neuromuscular disorders (e.g. type and severity of patient's functional deficits), iii) generate necessary data to foresee a future study involving a home use of the device and assessment of long-term benefits.
Objectives: - To establish if physiotherapists can use the waveform traces from the cough assist machine to work out when patients are having an abnormal airway response to cough assist - To establish how cough assist device settings, particularly in breath and cough pressures affect a patient's response to using the cough assist device - To provide some clinical guidance to physiotherapists on methods for assessing and treating abnormal airway responses to cough assist devices Methodology: Subjects will complete breathing tests; spirometry, peak cough flow (PCF) and sniff nasal inspiratory pressure (SNIP) to establish baseline breathing function and rule out anyone with breathing conditions. A nasal camera will be used to look at the voice box at rest. Cough assist will be delivered via a face mask which will allow for simultaneous use of the nasal camera and cough assist carried out in the same way as another research team have done previously. The nasal camera will be attached to a video camera to allow recording, analysis and documentation of the observations. The cough assist protocol will be delivered by a physiotherapist experienced in delivering cough assist. Cough assist waveforms will be downloaded into Care Orchestrator software (Philips Respironics, Murraysville, USA) and reviewed at the same time as the nose camera recordings to establish if voice box responses can be identified from the waveform patterns. For confirmation of Care Orchestrator software waveforms, a device that records airflow during breathing (spirometer) will be connected (Alpha touch, Vitalograph, Ennis, Ireland) into the cough assist circuit in the same way another research team has before.
This Phase 3 trial (Study SRK-015-003) is being conducted in patients ≥2 years old at Screening, who were previously diagnosed with later-onset spinal muscular atrophy (SMA) (i.e., Type 2 and Type 3 SMA) and are receiving an approved survival motor neuron (SMN) upregulator therapy (i.e., either nusinersen or risdiplam), to confirm the efficacy and safety of apitegromab as an adjunctive therapy to nusinersen and evaluate the efficacy and safety of apitegromab as an adjunctive therapy to risdiplam.
The aim is to evaluate the correlation of quantified fibro-adipous infiltration of muscles, using the MRI-based Mercuri score, with deficiencies, activity limitations and social participation in patients with arthrogryposis multiplex congenita.
HOPE-3 is a two cohort, Phase 3, multi-center, randomized, double-blind, placebo-controlled clinical trial evaluating the efficacy and safety of a cell therapy called CAP-1002 in study participants with Duchenne muscular dystrophy (DMD) and impaired skeletal muscle function. Non-ambulatory and ambulatory boys and young men who meet eligibility criteria will be randomly assigned to receive either CAP-1002 or placebo every 3 months for a total of 4 doses during the first 12-months of the study. All participants will be eligible to receive 4 doses of CAP-1002 for an additional 12 months as part of an open-label extended assessment period.
The aim of this study is to assess the impact of individually planned therapeutic procedures, using, among others, the concept of EMG biofeedback, to improve the general functional state, selected motor activities, stimulation and strength of specific muscle syndromes as well as postural parameters in children, adolescents and adults with neuromuscular diseases.
The primary objective of the study is to explore the convergent validity of smartphone-based Konectom DOAs against in-clinic standard assessments. The secondary objectives of this study are to evaluate the test-retest reliability of smartphone-based Konectom Digital Outcome Assessments (DOAs); to determine the relationship between Konectom upper limb DOAs and conventional upper limb assessments in clinical environments; to determine the relationship between Konectom lower limb DOAs and status of ambulation in clinical environments; to evaluate group differences in smartphone-based Konectom DOAs [self-administered at home and in-clinic] between person with spinal muscular atrophy (PwSMA) and healthy subjects (HS); to evaluate the variability of Konectom DOAs self-administered in everyday environment in HS and PwSMA; to compare Konectom DOAs between in-clinic supervised administration versus self-assessments in everyday environment in HS, PwSMA groups; to evaluate the relationship of Konectom DOAs against patient-reported outcomes (PROs) in PwSMA and to evaluate the clinical safety of Konectom in PwSMA.
The Swiss Patient Registry for DMD/BMD and SMA was launched in 2008 in order to give Swiss patients access to new therapies. It was founded with the financial support of several patient organizations and research foundations. Since 2008, children, adolescents and adults with DMD, BMD and SMA are registered with the help of all major muscle centers in Switzerland. After nearly ten years of activity, the Swiss Patient Registry for DMD/BMD and SMA implemented several adaptations in 2018 to meet current and future expectations of patient's organizations, health authorities and research organizations.
Congenital myopathies (CM) is a large group of muscle disorders, presenting with hypotonia and non-progressive generalised muscle weakness, which can lead to motor developmental delay.More than 20 genes can cause CM and currently there is no curative treatment for this disorder. Case reports and a smaller study have previous reported that oral salbutamol has benefited subjects with different types of congenital myopathies by increasing their muscle strength.The exact effect of salbutamol in muscle cells isn't exactly known but it has been hypothesized to have an anabolic effect by triggering different pathways inside the muscle cells which increase cell proliferation, decrease apoptosis, decreases proteolysis and increases protein synthesis. The aim of our study is evaluate if daily oral salbutamol can increase the muscle function and muscle strength in these patients after 6 months on treatment, compared to no treatment.
The purpose of this study is to determine whether there is a functional change in children with Cerebral Palsy (CP) and other neuromuscular disorders participating in Neurodevelopmental Treatment (NDT) intervention using the contemporary practice model (CPM).