Neuromuscular Blockade Clinical Trial
Official title:
Optimal Control of Muscle Strength for Electroconvulsive Therapy: A Comparison of Succinylcholine Versus Rocuronium-induced Neuromuscular Blockade
Electroconvulsive therapy (ECT) is the transcutaneous application of small electrical stimuli to the brain to produce generalized seizures for the treatment of selected psychiatric disorders such as severe depression. The aim of ECT is to induce a therapeutic tonic seizure where the person loses consciousness and has convulsions. Patients need general anesthesia and neuromuscular blockade to treat pain and avoid excessive tonic clonic motor contraction that might be associated with compression fractures. Neuromuscular blocking drugs (NMBD) are, therefore, administered after induction of general anesthesia to induce neuromuscular blockade. Despite the importance of NMBDs to provide optimal conditions for ECT treatment, the optimal NMBD dose to achieve acceptable neuromuscular blockade without excessive or untoward effects has not previously been identified in any study and in a prospective randomized fashion. The aim of this study is, therefore, to identify the optimal NMBD dose of two commonly used neuromuscular blocking agents (succinylcholine and rocuronium) in order to optimize the muscle strength modulation during ECT that facilitates ECT with the minimal side effects.
Patients, who consent to participate in the study, will randomly receive either
succinylcholine or rocuronium by utilizing the Dixon's up and down technique. For patient
safety, the first dose of either agent will be defined by the anesthesiologist providing
care, and subsequent doses will be incrementally increased or decreased by 10% based on the
assessment of a psychiatrist blinded to dose, who uses a dichotomous scale to assess the
quality of the ECT (acceptable and not acceptable). The investigators will switch to the
second compound as soon as the patient has received one neuromuscular blocking agent dose
that resulted in 'acceptable muscle relaxation', and another dose that resulted in
'unacceptable' conditions'.
Acceleromyography will be used for monitoring neuromuscular transmission. Following
induction of general anesthesia, the TOF-Watch SX will be calibrated (mode 1, 50 mA), and
train-of-four (TOF) stimulation (every 15 seconds) will be initiated and maintained until
recovery of the T1 to 100% baseline. Non-invasive blood pressure, heart rate, peripheral
oxygen saturation (SpO2), and time to recovery of spontaneous breathing will be measured
during the procedure. In addition the investigators will measure stimulation parameters used
to initiate ECT, as well as the duration of seizure as well as the entire procedure time.
;
Allocation: Randomized, Endpoint Classification: Safety/Efficacy Study, Intervention Model: Crossover Assignment, Masking: Double Blind (Caregiver, Outcomes Assessor), Primary Purpose: Treatment
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05558969 -
The Effect of Magnesium Use in Reversal of Neuromuscular Block With Sugammadex
|
N/A | |
Completed |
NCT03168308 -
Sugammadex vs. Neostigmine for Neuromuscular Blockade Reversal in Thoracic Surgical Patients
|
Phase 4 | |
Not yet recruiting |
NCT03978780 -
Erector Spinae Block vs. Placebo Block Study
|
N/A | |
Completed |
NCT02912039 -
Electromyographic Assessment of the TetraGraph in Normal Volunteers
|
||
Completed |
NCT02892045 -
Mindray Neuromuscular Transmission Transducer
|
||
Completed |
NCT03427385 -
Minimum Local Anesthetic Dose for Adductor Canal Block
|
N/A | |
Completed |
NCT01450813 -
The Effect of Neuromuscular Blockade on the Composite Variability Index (CVI) During Laryngoscopy
|
N/A | |
Completed |
NCT00535496 -
Relation Between TOF-Watch® SX and a Peripheral Nerve Stimulator After 4.0 mg.Kg-1 Sugammadex (P05698)
|
Phase 3 | |
Recruiting |
NCT05794503 -
Postoperative Urinary Retention After Reversal of Neuromuscular Block by Neostigmine Versus Sugammadex
|
Early Phase 1 | |
Not yet recruiting |
NCT05993390 -
Pharmacological Reversal of Neuromuscular Blockade in Critically Ill Patients
|
N/A | |
Recruiting |
NCT04609410 -
Bleeding in Laparoscopic Liver Surgery
|
N/A | |
Terminated |
NCT03649672 -
The Validity and Tolerability of Awake Calibration of the TOF Watch SX Monitor
|
N/A | |
Completed |
NCT05474638 -
Comparison of Mechanomyographic 100 Versus 200 Hz 5 Second Tetanic Fade Ratios During Neuromuscular Block Recovery
|
N/A | |
Completed |
NCT05687253 -
Evaluation of Intubation Conditions Following BX1000 or Rocuronium in Subjects Undergoing Surgery
|
Phase 2 | |
Completed |
NCT05120999 -
Comparison of Onset of Neuromuscular Blockade With Electromyographic and Acceleromyographic Monitoring
|
||
Completed |
NCT03608436 -
The Effect of Low Pressure Pneumoperitoneum During Laparoscopic Colorectal Surgery on Early Quality of Recovery
|
Phase 4 | |
Completed |
NCT03572413 -
The Effect of Low Pressure Pneumoperitoneum During Laparoscopic Colorectal Surgery on Innate Immune Homeostasis.
|
Phase 4 | |
Recruiting |
NCT02930629 -
Residual Block in Postoperative Anaesthetic Care Unit
|
N/A | |
Completed |
NCT02932254 -
Magnesium Sulfate Effect Following the Reversal of Neuromuscular Blockade Induced by Rocuronium With Sugammadex
|
Phase 4 | |
Completed |
NCT01828385 -
Effect of Magnesium on the Recovery Time of Neuromuscular Blockade With Sugammadex
|
Phase 4 |