Clinical Trials Logo

Clinical Trial Details — Status: Not yet recruiting

Administrative data

NCT number NCT04154241
Other study ID # TASMC-19-ES-0583-CTIL
Secondary ID
Status Not yet recruiting
Phase N/A
First received
Last updated
Start date March 10, 2020
Est. completion date March 10, 2022

Study information

Verified date November 2019
Source Tel-Aviv Sourasky Medical Center
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

euroendocrine tumors (NETs) are neoplasms that originate from diffuse neuroendocrine system which consist about 17 types of different neuroendocrine cells. These cells combine properties of nerve cells with properties of endocrine cells, that is they receive neuronal signal and produce hormones.The most common locations for NETs are the lungs and organs of the gastroenteropancreatic (GEP) system, however they can be found in any other organ in the body . Clinically, functional NET cells secrete hormones which cause symptoms such as diarrhea or flushing, however non-functional NET cells also exist posing a challenge in the identification and diagnosis of the disease . Besides surgery to remove the tumor, there are numerous of treatment options for systemic handling of the NETs. These treatments include: somatostatin analogues, interferon, chemotherapy, transarterial (chemo) embolisation, radiofrequency ablation, sunitinib, everolimus and radionuclide targeted therapy. The choice of treatment depends on the correct characterization of the NET, primary tumor location, tumor subtype, grade and stage of the disease . Biomarkers for NETs serve a critical role in the diagnosis stage, where it is highly important to identify the NET type and precise location. Furthermore, selecting the correct biomarkers for monitoring the disease is important to predict response for treatment and allow the choice of the right treatment from the large variety of treatment options. NET biomarkers include circulating biomarkers such as Chromogranin A, Ki67, Neuron Specific Enolase (NSE), 5 hydroxyindoleacetic acid (5HIAA) and many others found in blood samples, or in the tumor tissue . Beside the circulating biomarkers, imaging biomarkers plays a central role in diagnosis, staging, treatment selection and follow-up of NETs . Current imaging tools are morphological modalities such as CT, MRI and Ultrasound and molecular imaging. Several types of molecular imaging techniques are performed to characterize NETs: single photon emission computed tomography (SPECT) with 111In-pentetreotide, largely superseded now by positron emission tomography (PET) with 68Ga-labeled somatostatin analogs, is used to identify the somatostatin receptor status.


Description:

18F-DOPA and 11C-5-HTP are used to evaluate neuroendocrine metabolism . 18-fluoro-deoxy-glucose (FDG) PET is usually a poor indication for NETs since these neoplasms tend to be metabolic inactive, and thus FDG-PET is only used for high grade more aggressive NETs . Only a combination of several biomarkers together can lead to NET description that allows treatment selection and to some extent prediction of treatment success.

In this study the investigators wish to take advantage of the new hybrid PET-MR and use it to find new methods to characterize NETs. Only very few PET-MR studies have been performed with correlation to NETs and they showed the potential of this tool for tumor characterization .

The investigators plan to integrate PET-MR with big data analysis methods to obtain an improved tool for staging, characterization and monitoring NETs.


Recruitment information / eligibility

Status Not yet recruiting
Enrollment 50
Est. completion date March 10, 2022
Est. primary completion date May 10, 2021
Accepts healthy volunteers No
Gender All
Age group 18 Years to 120 Years
Eligibility Inclusion Criteria:

A cohort of patients that were diagnosed with NET using biopsy.

Exclusion Criteria:

1. Age <18.

2. Pregnant or breast feeding patients.

Study Design


Related Conditions & MeSH terms


Intervention

Diagnostic Test:
PET/MR scan
The PET will be performed with (68Ga)-labeled somatostatin analogue since it was proven to be superior to other NET PET tracers in terms of lesion detection and sensitivity [11] [12]. The 3 tesla magnet of the MRI should allow acquisition of several contrasts within a reasonable time frame. The protocol will include T1 and T2-weighted images, diffusion-weighted images with multiple b values and apparent diffusion coefficient (ADC) maps. All images will be analyzed with big data tools such as radiomics and texture analysis in order to integrate all image parameters and different contrasts into individual tumor status. Then, accuracy, sensitivity and specificity will be evaluated by correlation of this data collection and analysis method with histological biomarkers (for example, Ki67 level) and treatment results.

Locations

Country Name City State
n/a

Sponsors (1)

Lead Sponsor Collaborator
Tel-Aviv Sourasky Medical Center

Outcome

Type Measure Description Time frame Safety issue
Primary Patients who preformed PET/MR. The investigators develop new methods for the characterization and monitoring of NETs using the latest state of the art PET-MR technology combined with big data analysis methods in order to obtain a more accurate, specific and sensitive biomarker. 1 year
See also
  Status Clinical Trial Phase
Completed NCT01218555 - Study of Everolimus (RAD001) in Combination With Lenalidomide Phase 1
Recruiting NCT03412877 - Administration of Autologous T-Cells Genetically Engineered to Express T-Cell Receptors Reactive Against Neoantigens in People With Metastatic Cancer Phase 2
Withdrawn NCT04614766 - A Clinical Trial Evaluating the Safety of Combining Lutathera(R) and Azedra(R) to Treat Mid-gut Neuroendocrine Tumors Phase 1/Phase 2
Recruiting NCT05556473 - F-Tryptophan PET/CT in Human Cancers Phase 1
Completed NCT03273712 - Dosimetry-Guided, Peptide Receptor Radiotherapy (PRRT) With 90Y-DOTA- tyr3-Octreotide (90Y-DOTATOC) Phase 2
Recruiting NCT05636618 - Targeted Alpha-Particle Therapy for Advanced SSTR2 Positive Neuroendocrine Tumors Phase 1/Phase 2
Terminated NCT03986593 - Cryoablation of Bone Metastases From Endocrine Tumors N/A
Recruiting NCT04584008 - Targeted Agent Evaluation in Digestive Cancers in China Based on Molecular Characteristics N/A
Completed NCT02815969 - The Indol Profile; Exploring the Metabolic Profile of Neuroendocrine Tumors
Completed NCT02441062 - Impact of Ga-68 DOTATOC PET-CT Imaging in Management of Neuroendocrine Tumors Phase 2
Active, not recruiting NCT02174549 - Dose-defining Study of Tirapazamine Combined With Embolization in Liver Cancer Phase 1/Phase 2
Completed NCT02132468 - A Ph 2 Study of Fosbretabulin in Subjects w Pancreatic or Gastrointestinal Neuroendocrine Tumors w Elevated Biomarkers Phase 2
Completed NCT02134639 - PET-CT Imaging of Neuro-endocrine Tumors and Preliminary Clinical Evaluation N/A
Recruiting NCT01201096 - Neo-adjuvant Peptide Receptor Mediated Radiotherapy With 177Lutetium in Front of Curative Intended Liver Transplantation in Patients With Hepatic Metastasis of Neuroendocrine Tumors (NEO-LEBE) N/A
Terminated NCT01163526 - Perfusion CT as a Predictor of Treatment Response in Patients With Hepatic Malignancies N/A
Completed NCT01099228 - Combination Targeted Radiotherapy in Neuroendocrine Tumors N/A
Completed NCT00171873 - Antiproliferative Effect of Octreotide in Patients With Metastasized Neuroendocrine Tumors of the Midgut Phase 3
Active, not recruiting NCT05077384 - Open-label Study of Surufatinib in Japanese Patients Phase 1/Phase 2
Active, not recruiting NCT04544098 - Lutathera in People With Gastroenteropancreatic (GEP), Bronchial or Unknown Primary Neuroendocrine Tumors That Have Spread to the Liver Early Phase 1
Active, not recruiting NCT02736500 - Peptide Receptor Radionuclide Therapy With 177Lu-Dotatate Associated With Metronomic Capecitabine In Patients Affected By Aggressive Gastro-Etero-Pancreatic Neuroendocrine Tumors Phase 1/Phase 2