Clinical Trials Logo

Neurilemmoma clinical trials

View clinical trials related to Neurilemmoma.

Filter by:

NCT ID: NCT04278118 Recruiting - Clinical trials for Intracranial Neoplasm

Hypofractionated Proton Therapy for Benign Intracranial Brain Tumors, the HiPPI Study

HiPPI
Start date: February 18, 2020
Phase: N/A
Study type: Interventional

This phase II trial studies how well hypofractionated proton or photon radiation therapy works in treating patients with brain tumors. Hypofractionated radiation therapy delivers higher doses of radiation therapy over a shorter period of time and may kill more tumor cells. A shorter duration of radiation treatment may avoid some of the delayed side effects of radiation while providing a more convenient treatment and reducing costs.

NCT ID: NCT04241679 Completed - Clinical trials for Sensorineural Hearing Loss

Auditory Nerve Test System During Vestibular Schwannoma Resection

ANTS
Start date: January 20, 2020
Phase: N/A
Study type: Interventional

The Auditory Nerve Test System (ANTS) is a novel device that stimulates the auditory nerve much like a cochlear implant. The purpose of this study is to demonstrate feasibility of the ANTS during translabyrinthine surgery for vestibular schwannoma resection. If the auditory nerve is kept intact, then the patients will also receive a cochlear implant at the same time potentially alleviating the morbidities caused by a vestibular schwannoma and asymmetric sensorineural hearing loss.

NCT ID: NCT04196933 Enrolling by invitation - Migraine Clinical Trials

Analysis of Vestibular Compensation Following Clinical Intervention for Vestibular Schwannoma

Start date: September 5, 2019
Phase: N/A
Study type: Interventional

Multiple sensory cues are typically generated by discrete events, and while they do not reach the cerebrum simultaneously, the brain can bind them temporally if they are interpreted as corresponding to a single event. The temporal binding of vestibular and non-vestibular sensory cues is poorly understood and has not been studied in detail, despite the fact that the vestibular system operates in an inherently multimodal environment. In this study, the researchers are investigating the physiology and pathophysiology of vestibular temporal binding by studying normal subjects, patients with peripheral and central vestibular dysfunction, and patients with vestibular and cochlear signals provided by prosthetic implants in the inner ear.

NCT ID: NCT04163419 Active, not recruiting - Pain Clinical Trials

Phase 2 Study of Tanezumab in Subjects With Moderate to Severe Pain Due to Schwannomatosis

Start date: April 30, 2020
Phase: Phase 2
Study type: Interventional

The primary objective of this study is to determine whether the administration of tanezumab, an anti-nerve growth factor (NGF) antibody, improves pain relief in schwannomatosis patients receiving background non-NSAID therapy.

NCT ID: NCT04128345 Recruiting - Clinical trials for Vestibular Schwannoma

Novel Multimodality Imaging for Navigation in Skull Base Surgery

SBN
Start date: May 1, 2019
Phase:
Study type: Observational

Successful neurosurgery to remove tumours around the base of the skull, such as a vestibular schwannoma, depends on achieving maximal tumour removal whilst preserving crucial neurological functions such as facial movement, and maintaining quality of life. Current techniques to direct surgery are based on the surgeon's expertise and knowledge of the relevant anatomy, supplemented by the use of electrical recording and stimulation of the facial nerve. However, it is often very difficult to visualise the nerve during surgery and facial nerve paralysis remains a potentially devastating complication of surgery. Advanced imaging methods may be used to visualise important neural connections in the brain and computer-assisted processing can generate tumour maps from MRI and ultrasound scans. This study aims to utilise these technologies to develop a 3D navigation system for skull base surgery. This study aims to develop a system that will combine MRI and intraoperative ultrasound imaging to enhance the surgeon's view of the tumour, facial nerve and other surrounding critical structures during surgery. This information will be made available in the navigation system in the operating room so that operations are more precise resulting in better tumour removal rates and fewer complications. The system will be assessed during the treatment of 20 patients with vestibular schwannoma at the National Hospital for Neurology and Neurosurgery. This feasibility study will validate the different parts of the new system and help us design a future research study to determine its effectiveness in improving patient care. This project will result in safer and more effective neurosurgery, with potential consequent financial savings for the NHS and the UK, in addition to marked improvements in the quality of life of patients and reduced dependency upon others.

NCT ID: NCT04057976 Recruiting - Clinical trials for Vestibular Schwannoma

Use of DTT to Define Facial Nerve Position in Vestibular Schwannomas

Start date: June 27, 2019
Phase: N/A
Study type: Interventional

Vestibular schwannomas (VS) arise from the vestibulocochlear (hearing and balance) nerve, located at the base of the brain. Although benign, VS can enlarge over time, resulting in debilitating symptoms; therefore, surgical removal is frequently offered. One significant risk of surgery is inadvertent injury to the facial nerve, which lies adjacent to the vestibulocochlear nerve. Currently, the nerve's course is only revealed during surgical dissection and injury can cause permanent facial weakness. It would therefore be useful for the surgeon to know the course of the nerve before operating. To this end, a new MRI technique known as probabilistic diffusion tensor tractography (DTT) has shown potential in revealing the course of the facial nerve pre-operatively. However, its clinical reliability remains uncertain. This study aims to investigate the reliability of DTT in identifying the course of the facial nerve preoperatively in patients undergoing surgery for VS. The future benefit would be to enable surgeons to operate with more confidence and potentially reduce the chance of nerve injury. The study will recruit adult patients due to have surgery for VS. The only change to the participants' clinical pathways will be the addition of a DTT sequence to their pre-operative MRI scans (increasing scanning time by approximately 10 minutes).

NCT ID: NCT03958006 Completed - Clinical trials for Vestibular Schwannoma

Simultaneous Cochlear Implantation During Translabyrinthine Resection of Vestibular Schwannoma

Start date: December 5, 2018
Phase: N/A
Study type: Interventional

This study will address the feasibility of simultaneous cochlear implantation during resection of a vestibular schwannoma.

NCT ID: NCT03795675 Recruiting - Clinical trials for Vestibular Schwannoma

CI Following VS Removal or Labyrinthectomy

Start date: January 14, 2019
Phase: N/A
Study type: Interventional

This study is a prospective, clinical study to determine if it is safe and effective to use a cochlear implant over time in individuals undergoing removal of a vestibular schwannoma (VS), benign tumor of the hearing and balance nerve or undergoing a labyrinthectomy for treatment of Meniere's disease. Individuals undergoing these surgeries will be deaf on the surgical side after the procedure. Currently, cochlear implants are approved for use and not considered investigational in individuals with hearing loss on both sides. However, use of a cochlear implant for these patient populations (single-sided hearing loss) will be considered a new use of an approved device. Participants undergoing surgery to remove a VS or having a labyrinthectomy will have a cochlear implant inserted after the surgical procedure for clinical care. Approximately 4 weeks after surgery, participants will be fitted with an external speech processor on the surgical side that will stimulate the internal cochlear implant. Participants will return at the following intervals after the initial processor fitting: 2 weeks, 1 month, 3 months, 6 months, 9 months, and 12 months. At each interval, participants will complete questionnaires on how they are hearing with the implant and their quality of life with the implant and be tested on their ability to hear sounds and understand speech. Potential risks are those associated with all cochlear implant surgeries, and include device failure resulting in removal of device, irritation or redness in surgical area and/or area where processor is attached, increased ringing in the ear, facial nerve stimulation and a change in the way speech and other sounds sound through the implant. Potential benefits to individual participants in this study include improvement in detection and speech understanding of the surgical ear. Participants may also experience improved abilities to locate sound and understand speech in noise as the result of having hearing on both sides.

NCT ID: NCT03745560 Recruiting - Hearing Loss Clinical Trials

Intraoperative EABR for Decision Making

Start date: May 23, 2017
Phase:
Study type: Observational

In this study patients undergoing simultaneous translabyrinthine vestibular schwannoma resection and cochlear implantation are included. The goal of the study is to correlate the eABR results with postoperative hearing results.

NCT ID: NCT03745534 Recruiting - Hearing Loss Clinical Trials

Cochlear Implantation After Gamma Knife Radiosurgery With eABR and Correlation to Postoperative Hearing Results - a Pilot Study

Start date: August 1, 2018
Phase:
Study type: Observational

Patients undergoing cochlear implantation after radio surgery for vestibular schwannoma will be included in the study. Patients will undergo preoperative and intraoperative eABR measurement. Correlations to postoperative hearing results will be drawn.