Clinical Trials Logo

Nervous System Neoplasms clinical trials

View clinical trials related to Nervous System Neoplasms.

Filter by:

NCT ID: NCT01353300 Completed - Sarcoma Clinical Trials

Gene Mutation in Samples From Young Patients With Pleuropulmonary Blastoma Syndrome at Risk for Developing Cancer

Start date: May 2011
Phase: N/A
Study type: Observational

RATIONALE: The identification of gene mutations in young patients with pleuropulmonary blastoma syndrome may allow doctors to better understand the genetic processes involved in the development of some types of cancer, and may also help doctors identify patients who are at risk for cancer. PURPOSE: This research study studies gene mutations in samples from young patients with pleuropulmonary blastoma syndrome at risk for developing cancer.

NCT ID: NCT01346267 Completed - Clinical trials for Unspecified Childhood Solid Tumor, Protocol Specific

Acupressure in Controlling Nausea in Young Patients Receiving Highly Emetogenic Chemotherapy

SCUSF1202
Start date: May 2011
Phase: N/A
Study type: Interventional

RATIONALE: Acupressure wristbands may prevent or reduce nausea and caused by chemotherapy. It is not yet known whether standard care is more effective with or without acupressure wristbands in controlling acute and delayed nausea. PURPOSE: This randomized phase III trial is studying how well acupressure wristbands work with or without standard care in controlling nausea in young patients receiving highly emetogenic chemotherapy.

NCT ID: NCT01273090 Completed - Lymphoma Clinical Trials

Imetelstat Sodium in Treating Young Patients With Refractory or Recurrent Solid Tumors or Lymphoma

Start date: May 2011
Phase: Phase 1
Study type: Interventional

RATIONALE: Imetelstat sodium may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase I clinical trial is studying the side effects and best dose of imetelstat sodium in treating young patients with refractory or recurrent solid tumors or lymphoma.

NCT ID: NCT01236053 Completed - Breast Cancer Clinical Trials

Cancer in Patients With Gabapentin (GPRD)

Start date: June 2010
Phase: N/A
Study type: Observational

High doses of gabapentin are associated with pancreatic acinar cell tumors in rats, but there has been no post marketing pancreatic carcinogenicity signal with gabapentin as reported by spontaneous reports in AERS or in the published literature. In a published case-control screening study of the association of gabapentin with 55 cancers, the only cancer that met the screening criteria for possibly increased cancer risk with gabapentin exposure was renal (including renal pelvis) cancer. This association was judged to be likely due to or substantially accentuated by confounding by cigarette smoking, hypertension, and lifestyle (Cancer Causes Control 2009;20:1821-1835). The relationship between gabapentin exposure and pancreatic cancer and renal cancer is studied in NCT01138124, and supplemental analyses for these cancers are performed in the current study. The FDA recommended GSK also study the relationship between gabapentin and all-cancer sites, as well as cancer at the following specific sites: 1) stomach, 2) anus, anal canal, and anorectum, 3) lung and bronchus, 4) bones and joints, 5) breast, 6) penis, 7) urinary bladder, and 8) other nervous system. The primary objective of this study is to determine whether exposure to gabapentin is associated with an increased risk of developing all-cancer, and these specific cancers in the United Kingdom (UK) General Practice Research Database (GPRD). Each member of the UK population is registered with a General Practice, which centralizes the medical information not only from the general practitioners themselves but also from specialist referrals and hospital attendances. Over 487 General Practices contribute data to the GPRD. The study cohort from which cases and controls are drawn is all subjects in the GPRD 1993-2008. Gabapentin was approved in the UK in May 1993. Entry into the study cohort begins Jan 1, 1993 for all those who are registered in GPRD before that time, and at the time of registration if later than Jan 1, 1993. Subjects are excluded from the GPRD cohort if they have a cancer diagnosis or a history of cancer prior to the cohort entry date. Patients with a first diagnosis of the respective cancer 1995-2008 are risk set matched with up to 10 controls within the same General Practice for age at cohort entry (within two years), sex, and year of entry into the study cohort (within one year). For cases, the index date is the date of first diagnosis of the respective cancer. The index date for controls is set as the date at which the follow-up time from cohort entry is the same as the case. The index date is chosen so as to give the control equal follow-up time to that of the case for ascertainment of use of gabapentin. Cases and controls will be required to have at least 2 years of follow-up in the study cohort before their index date. Cases must have no history of any other cancer diagnosis prior to the index date. Controls are required to be free of cancer diagnosis in the database up to the control's index date. Data on gabapentin prescriptions are obtained for cases and controls from study cohort entry to the index date. Gabapentin exposure will be assessed as ever/never, number of prescriptions, cumulative dose, and cumulative duration, with a 2 year lag period incorporated to control for protopathic bias (gabapentin prescription for initial pain symptoms of undiagnosed cancer) and latency (time between cancer onset and specific GPRD cancer diagnosis). Crude and adjusted odds ratios and 95% confidence intervals (CI) will be produced from conditional logistic regression models, with additional analyses evaluating for dose-response. Covariates include indications for gabapentin use and risk factors for each cancer.

NCT ID: NCT01222221 Completed - Clinical trials for Brain and Central Nervous System Tumors

Vaccine Therapy, Temozolomide, and Radiation Therapy in Treating Patients With Newly Diagnosed Glioblastoma Multiforme

Start date: July 2010
Phase: Phase 1
Study type: Interventional

RATIONALE: Vaccines made from peptides may help the body build an effective immune response to kill tumor cells. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving vaccine therapy together with temozolomide and radiation therapy may kill more tumor cells. PURPOSE: This phase I trial is studying the side effects of vaccine therapy when given together with temozolomide and radiation therapy in treating patients with newly diagnosed glioblastoma multiforme.

NCT ID: NCT01217437 Completed - Clinical trials for Recurrent Medulloblastoma

Temozolomide and Irinotecan Hydrochloride With or Without Bevacizumab in Treating Young Patients With Recurrent or Refractory Medulloblastoma or CNS Primitive Neuroectodermal Tumors

Start date: November 22, 2010
Phase: Phase 2
Study type: Interventional

This randomized phase II trial studies how well giving temozolomide and irinotecan hydrochloride together with or without bevacizumab works in treating young patients with recurrent or refractory medulloblastoma or central nervous system (CNS) primitive neuroectodermal tumors. Drugs used in chemotherapy, such as temozolomide and irinotecan hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. It is not yet known whether temozolomide and irinotecan hydrochloride are more effective with or without bevacizumab in treating medulloblastoma or CNS primitive neuroectodermal tumors.

NCT ID: NCT01164189 Completed - Clinical trials for Central Nervous System Tumors

Bevacizumab in Recurrent Grade II and III Glioma

TAVAREC
Start date: February 2011
Phase: Phase 2
Study type: Interventional

RATIONALE: Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. It is not yet known whether temozolomide is more effective when given with or without bevacizumab in treating patients with recurrent glioma. PURPOSE: This randomized clinical trial is studying how well temozolomide works with or without bevacizumab in treating patients with recurrent glioma.

NCT ID: NCT01158300 Completed - Clinical trials for Brain and Central Nervous System Tumors

PTC299 in Treating Young Patients With Refractory or Recurrent Primary Central Nervous System Tumors

Start date: November 2010
Phase: Phase 1
Study type: Interventional

RATIONALE: PTC299 may stop the growth of tumor cells by blocking blood flow to the tumor. PURPOSE: This phase I trial is studying the side effects and the best dose of PTC299 in treating young patients with recurrent or refractory primary central nervous system tumors.

NCT ID: NCT01135563 Completed - Solid Tumors Clinical Trials

Study of Vinblastine and Sirolimus in Children With Recurrent/Refractory Solid Tumours Including CNS Tumours

Start date: April 2010
Phase: Phase 1
Study type: Interventional

This study is a Phase I study using vinblastine and sirolimus in patients with relapsed solid tumors including selected brain tumors and lymphoma. The investigators hypothesis is that the combination administration of weekly vinblastine and sirolimus is safe.

NCT ID: NCT01067196 Completed - Clinical trials for Central Nervous System Tumors

Outcomes Study of Late Effects After Proton RT for Pediatric Tumors of the Brain, Head, and Neck

CN01
Start date: February 2010
Phase:
Study type: Observational

The purpose of this study is to collect information from medical records to see what effects proton beam radiation has on cancer and analyze possible side effects.