View clinical trials related to Nerve Degeneration.
Filter by:The clinical study is designed to evaluate the safety, tolerability and pharmacokinetics of inhaled nanoparticle nanoparticle formulation of Remdesivir (GS-5734) alone and in combination with NA-831 in 48 healthy volunteers.
This study investigates changes in glymphatic flow in the brain acutely after vigorous-intensity steady-state aerobic exercise. Twenty subjects (10 male and 10 female) perform 25 minute submaximal cycle ergometry exercise and the changes in the glymphatic flow and cerebral perfusion are evaluated using a variety of MRI sequences (e.g. MREG).
This is a research study that aims to examine whether Veterans with mild Traumatic Brain Injuries are at risk for dementia by studying their memory, brain wave activity, brain structure and proteins that can be elevated after brain injury and in dementia.
This study is a prospective study with a mean of 7-year follow-up interval, aims to monitor the progression of α-synucleinopathy neurodegeneration by the evolution of prodromal markers and development of clinical disorders in patients with idiopathic REM Sleep Behavior Disorder (iRBD) and healthy controls.
Accumulating evidence indicates that inflammation is prominent both in the blood and central nervous system (CNS) of Alzheimer's disease (AD) patients. These data suggest that systemic inflammation plays a crucial role in the cause and effects of AD neuropathology. Capitalizing on the experience from a previous clinical trial with thalidomide, here, the investigators hypothesize that modulating both systemic and CNS inflammation via the pleiotropic immunomodulator lenalidomide is a putative therapeutic intervention for AD if administered at a proper time window during the course of the disease.
The purpose of this research study is to understand the factors that underlie changes in thinking and memory with increasing age. The investigators will test the usefulness of MRI, PET, and cognitive testing in detecting subtle changes in the brain that precede cognitive decline. An addendum to this study includes additional PET scans to examine the relationship between tau protein in the brain and cognitive decline. Tau is a protein that is known to form tangles in the areas of the brain important for memory, and these tau tangles are a hallmark of Alzheimer's disease. This sub-study research aims to look at the tau accumulation in the brain using an investigational drug called MK-6240, which is a radio tracer that gets injected prior to a positron emission tomography (PET) scan.
This is a 5-year observational study recruiting sixteen hundred and fifty individuals between the ages of 50 and 90 with different types of dementia as well as a comparison group of six hundred and fifty aged matched individuals without cognitive deficits. Participants will be recruited at sites across Canada and will undergo assessments and provide biological samples at baseline and two years after baseline.
The purpose of this study is to learn more about Neurodegeneration with Brain Iron Accumulation (NBIA) Disorders. Data is being collected on three types of NBIA disorders: Pantothenate Kinase-Associated Neurodegeneration (PKAN), PLA2G6-associated Neurodegeneration (PLAN) and Beta-propeller Protein-associated Neurodegeneration (BPAN). The study will (1) collect information about how symptoms and findings in NBIA change over time and (2) identify measures of NBIA that can be used in future clinical trials. Participants will follow links to a secure website every 6 months for a period of 5-10 years to electronically complete a set of rating scales as related to their NBIA disorder.
CoRDS, or the Coordination of Rare Diseases at Sanford, is based at Sanford Research in Sioux Falls, South Dakota. It provides researchers with a centralized, international patient registry for all rare diseases. This program allows patients and researchers to connect as easily as possible to help advance treatments and cures for rare diseases. The CoRDS team works with patient advocacy groups, individuals and researchers to help in the advancement of research in over 7,000 rare diseases. The registry is free for patients to enroll and researchers to access. Visit sanfordresearch.org/CoRDS to enroll.