Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT02612350
Other study ID # Pathway Gennomics 004
Secondary ID
Status Completed
Phase
First received November 13, 2015
Last updated April 4, 2018
Start date November 2015
Est. completion date August 2017

Study information

Verified date April 2018
Source Pathway Genomics
Contact n/a
Is FDA regulated No
Health authority
Study type Observational

Clinical Trial Summary

Pathway Genomics Corporation (Pathway Genomics), a San Diego, California company, is involved in the development and validation of new molecular diagnostic assays for the analysis of circulating tumor deoxyribonucleic acid (DNA) (ctDNA) found in the plasma-derived DNA (cell-free DNA or cfDNA) in order to identify specific variants (mutations) in cancer driver genes. The purpose of testing for mutations in ctDNA is to detect and monitor cancer. All cells shed DNA into the bloodstream. Finding cancer-associated mutations in the cfDNA may lead to early detection of cancer in an otherwise apparently healthy (i.e. asymptomatic) individual or may allow the healthcare provider to more effectively monitor and treat a known cancer patient. The analysis is performed using a polymerase chain reaction (PCR)-based methodology where oligonucleotides are designed to target specific mutations in designated genes of interest followed by next generation deep sequencing of the amplified targets. Evaluation of the performance of these assays for screening for cancer in asymptomatic subjects is essential for the clinical validation of the use of these assays. The specific aim of this protocol is to obtain relevant human blood samples from individual subjects at higher than average risk for the development of cancer due to age, heredity, or environmental or toxic exposures for use in the statistical analysis of this method as an adjunct screening test for the potential presence of cancer.


Description:

The objectives of this study are to obtain human blood samples from asymptomatic subjects who have never been diagnosed with cancer, but who may be at increased risk for cancer due to heredity, exposures, age, or family history to assess the validity of screening healthy but at risk patients for cancer via analysis of ctDNA.

Specifically, the blood specimens will be collected from individuals who have responded to a self-administered health questionnaire that screens for higher risk of contracting cancer. Each participant will be asked to provide a 30 ml blood sample to be drawn by a primary care provider (PCP) or licensed phlebotomist. The specimens collected during the study may also be used in the research and development of new or modified molecular genetics assays. The results of these studies will be used to further the understanding of the use of ctDNA for the detection and monitoring of cancer in humans.

The blood samples are collected in blood collection tubes (BCT) called Cell-Free DNA BCT® manufactured by Streck and intended for collection, stabilization and transportation of cell-free plasma DNA. This device also stabilizes and preserves cellular genomic DNA present in nucleated blood cells and circulating epithelial cells (tumor cells) found in whole blood. This product has not been cleared by the U.S. Food and Drug Administration for In Vitro Diagnostic use and is labeled by Streck for research use only. Under the Clinical Laboratory Improvement Amendments (CLIA) regulations, laboratories are authorized to validate and use, as part of a laboratory-developed test (LDT), devices that have not been cleared or approved by the FDA. Pathway Genomics validated the CancerInterceptTM Detect molecular analysis system with the Streck tubes, in accordance with CLIA.

Once the specimen has been collected and sent to Pathway by the physician or the phlebotomist who collects the samples, all other processing and testing are conducted by Pathway laboratory personnel. The analysis begins with the separation of the plasma from the rest of the blood sample. cfDNA will then be isolated from each sample. The quantity of cfDNA is measured and then the sample is amplified via PCR for next generation sequencing. The results of the sequencing will then be analyzed for the presence of one or more of the 96 mutations analyzed in this assay. The data are then reviewed and a report will be generated.


Recruitment information / eligibility

Status Completed
Enrollment 1106
Est. completion date August 2017
Est. primary completion date August 2017
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 18 Years and older
Eligibility Inclusion Criteria:

- strong family history of cancer

- known carrier of a pathogenic variant in a gene indicating an increased risk of cancer, for example, in the BRCA1 or TP53 genes.

- exposure to environmental toxins, carcinogens, or mutagens, including but not limited to tobacco, radiation, asbestos, long-time industrial chemical exposure

- age equal to or over 50 years

Exclusion Criteria:

- prior diagnosis of cancer except basal cell carcinoma

- no risk factors that place the individual at high risk

- age under 18 years

- individuals unwilling to sign the IRB-approved consent form

Study Design


Related Conditions & MeSH terms


Intervention

Genetic:
ctDNA Analysis for the Detection of Genetic Mutations
Cell-free DNA (cfDNA) is isolated from a blood plasma sample and tested for the presence of 96 specific well-described mutations in 9 cancer driver genes. The presence of more than 2 copies of a mutation may indicate the presence of a malignancy. Follow up with the subject's physician would be needed for an examination and any additional testing that the physician wants to perform to further assess for the development of cancer.

Locations

Country Name City State
United States Pathway Genomics San Diego California

Sponsors (1)

Lead Sponsor Collaborator
Pathway Genomics

Country where clinical trial is conducted

United States, 

References & Publications (17)

Beaver JA, Jelovac D, Balukrishna S, Cochran R, Croessmann S, Zabransky DJ, Wong HY, Toro PV, Cidado J, Blair BG, Chu D, Burns T, Higgins MJ, Stearns V, Jacobs L, Habibi M, Lange J, Hurley PJ, Lauring J, VanDenBerg D, Kessler J, Jeter S, Samuels ML, Maar D, Cope L, Cimino-Mathews A, Argani P, Wolff AC, Park BH. Detection of cancer DNA in plasma of patients with early-stage breast cancer. Clin Cancer Res. 2014 May 15;20(10):2643-2650. doi: 10.1158/1078-0432.CCR-13-2933. Epub 2014 Feb 6. — View Citation

Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, Bartlett BR, Wang H, Luber B, Alani RM, Antonarakis ES, Azad NS, Bardelli A, Brem H, Cameron JL, Lee CC, Fecher LA, Gallia GL, Gibbs P, Le D, Giuntoli RL, Goggins M, Hogarty MD, Holdhoff M, Hong SM, Jiao Y, Juhl HH, Kim JJ, Siravegna G, Laheru DA, Lauricella C, Lim M, Lipson EJ, Marie SK, Netto GJ, Oliner KS, Olivi A, Olsson L, Riggins GJ, Sartore-Bianchi A, Schmidt K, Shih lM, Oba-Shinjo SM, Siena S, Theodorescu D, Tie J, Harkins TT, Veronese S, Wang TL, Weingart JD, Wolfgang CL, Wood LD, Xing D, Hruban RH, Wu J, Allen PJ, Schmidt CM, Choti MA, Velculescu VE, Kinzler KW, Vogelstein B, Papadopoulos N, Diaz LA Jr. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014 Feb 19;6(224):224ra24. doi: 10.1126/scitranslmed.3007094. — View Citation

Bianchi DW, Chudova D, Sehnert AJ, Bhatt S, Murray K, Prosen TL, Garber JE, Wilkins-Haug L, Vora NL, Warsof S, Goldberg J, Ziainia T, Halks-Miller M. Noninvasive Prenatal Testing and Incidental Detection of Occult Maternal Malignancies. JAMA. 2015 Jul 14;314(2):162-9. doi: 10.1001/jama.2015.7120. — View Citation

Freidin MB, Freydina DV, Leung M, Montero Fernandez A, Nicholson AG, Lim E. Circulating tumor DNA outperforms circulating tumor cells for KRAS mutation detection in thoracic malignancies. Clin Chem. 2015 Oct;61(10):1299-304. doi: 10.1373/clinchem.2015.242453. Epub 2015 Aug 13. — View Citation

Hamakawa T, Kukita Y, Kurokawa Y, Miyazaki Y, Takahashi T, Yamasaki M, Miyata H, Nakajima K, Taniguchi K, Takiguchi S, Mori M, Doki Y, Kato K. Monitoring gastric cancer progression with circulating tumour DNA. Br J Cancer. 2015 Jan 20;112(2):352-6. doi: 10.1038/bjc.2014.609. Epub 2014 Dec 9. — View Citation

Hosny G, Farahat N, Tayel H, Hainaut P. Ser-249 TP53 and CTNNB1 mutations in circulating free DNA of Egyptian patients with hepatocellular carcinoma versus chronic liver diseases. Cancer Lett. 2008 Jun 18;264(2):201-8. doi: 10.1016/j.canlet.2008.01.031. Epub 2008 Mar 3. — View Citation

Izumchenko E, Chang X, Brait M, Fertig E, Kagohara LT, Bedi A, Marchionni L, Agrawal N, Ravi R, Jones S, Hoque MO, Westra WH, Sidransky D. Targeted sequencing reveals clonal genetic changes in the progression of early lung neoplasms and paired circulating DNA. Nat Commun. 2015 Sep 16;6:8258. doi: 10.1038/ncomms9258. — View Citation

Kidess E, Heirich K, Wiggin M, Vysotskaia V, Visser BC, Marziali A, Wiedenmann B, Norton JA, Lee M, Jeffrey SS, Poultsides GA. Mutation profiling of tumor DNA from plasma and tumor tissue of colorectal cancer patients with a novel, high-sensitivity multiplexed mutation detection platform. Oncotarget. 2015 Feb 10;6(4):2549-61. — View Citation

Kinugasa H, Nouso K, Miyahara K, Morimoto Y, Dohi C, Tsutsumi K, Kato H, Matsubara T, Okada H, Yamamoto K. Detection of K-ras gene mutation by liquid biopsy in patients with pancreatic cancer. Cancer. 2015 Jul 1;121(13):2271-80. doi: 10.1002/cncr.29364. Epub 2015 Mar 30. — View Citation

Lin PC, Lin JK, Lin CH, Lin HH, Yang SH, Jiang JK, Chen WS, Chou CC, Tsai SF, Chang SC. Clinical Relevance of Plasma DNA Methylation in Colorectal Cancer Patients Identified by Using a Genome-Wide High-Resolution Array. Ann Surg Oncol. 2015 Dec;22 Suppl 3:S1419-27. doi: 10.1245/s10434-014-4277-2. Epub 2014 Dec 4. — View Citation

Newman AM, Bratman SV, To J, Wynne JF, Eclov NC, Modlin LA, Liu CL, Neal JW, Wakelee HA, Merritt RE, Shrager JB, Loo BW Jr, Alizadeh AA, Diehn M. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014 May;20(5):548-54. doi: 10.1038/nm.3519. Epub 2014 Apr 6. — View Citation

Oshiro C, Kagara N, Naoi Y, Shimoda M, Shimomura A, Maruyama N, Shimazu K, Kim SJ, Noguchi S. PIK3CA mutations in serum DNA are predictive of recurrence in primary breast cancer patients. Breast Cancer Res Treat. 2015 Apr;150(2):299-307. doi: 10.1007/s10549-015-3322-6. Epub 2015 Mar 4. — View Citation

Perrone F, Lampis A, Bertan C, Verderio P, Ciniselli CM, Pizzamiglio S, Frattini M, Nucifora M, Molinari F, Gallino G, Gariboldi M, Meroni E, Leo E, Pierotti MA, Pilotti S. Circulating free DNA in a screening program for early colorectal cancer detection. Tumori. 2014 Mar-Apr;100(2):115-21. doi: 10.1700/1491.16389. — View Citation

Reinert T, Schøler LV, Thomsen R, Tobiasen H, Vang S, Nordentoft I, Lamy P, Kannerup AS, Mortensen FV, Stribolt K, Hamilton-Dutoit S, Nielsen HJ, Laurberg S, Pallisgaard N, Pedersen JS, Ørntoft TF, Andersen CL. Analysis of circulating tumour DNA to monitor disease burden following colorectal cancer surgery. Gut. 2016 Apr;65(4):625-34. doi: 10.1136/gutjnl-2014-308859. Epub 2015 Feb 4. — View Citation

Sanmamed MF, Fernández-Landázuri S, Rodríguez C, Zárate R, Lozano MD, Zubiri L, Perez-Gracia JL, Martín-Algarra S, González A. Quantitative cell-free circulating BRAFV600E mutation analysis by use of droplet digital PCR in the follow-up of patients with melanoma being treated with BRAF inhibitors. Clin Chem. 2015 Jan;61(1):297-304. doi: 10.1373/clinchem.2014.230235. Epub 2014 Nov 19. — View Citation

Spindler KL, Appelt AL, Pallisgaard N, Andersen RF, Brandslund I, Jakobsen A. Cell-free DNA in healthy individuals, noncancerous disease and strong prognostic value in colorectal cancer. Int J Cancer. 2014 Dec 15;135(12):2984-91. doi: 10.1002/ijc.28946. Epub 2014 Jun 17. — View Citation

Wang Y, Springer S, Mulvey CL, Silliman N, Schaefer J, Sausen M, James N, Rettig EM, Guo T, Pickering CR, Bishop JA, Chung CH, Califano JA, Eisele DW, Fakhry C, Gourin CG, Ha PK, Kang H, Kiess A, Koch WM, Myers JN, Quon H, Richmon JD, Sidransky D, Tufano RP, Westra WH, Bettegowda C, Diaz LA Jr, Papadopoulos N, Kinzler KW, Vogelstein B, Agrawal N. Detection of somatic mutations and HPV in the saliva and plasma of patients with head and neck squamous cell carcinomas. Sci Transl Med. 2015 Jun 24;7(293):293ra104. doi: 10.1126/scitranslmed.aaa8507. — View Citation

* Note: There are 17 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Number of subjects found with one or more of 96 ctDNA mutations A cohort of 1000 or more individuals who are at high risk for the development of cancer will be tested for the presence of 96 well-described mutations in 9 cancer driver genes via ctDNA analysis. The number of individuals with one or more of the 96 assayed mutations will be assessed. 1 year
Primary Number of copies of mutant alleles found in the positive subjects Among the cohort of subjects enrolled in the study in whom one or more of the 96 ctDNA mutations are detected, the number of copies per analyzed plasma sample will be calculated. 1 year
Primary Percentage of ctDNA found within the total amount of circulating free DNA (cfDNA) Within the samples found to contain one or more ctDNA mutation, the percentage of ctDNA within the total amount of cfDNA will be calculated. 1 year
Secondary Number of subjects with one or more of 96 ctDNA mutations who develop cancer The 1000 or more individuals in the study will be followed for 1 to 5 years to assess for the development of a malignancy. Special attention will be paid to the cohort who have initial assays indicating the presence of ctDNA. The subjects may be retested over time to show changing levels of ctDNA. Their own physicians will guide any follow up studies such as imaging or other laboratory testing. The test is designed as a means of case finding for cancer among individuals with high risk for development of cancer. 1 to 5 years
See also
  Status Clinical Trial Phase
Completed NCT03826043 - THrombo-Embolic Event in Onco-hematology N/A
Terminated NCT03166631 - A Trial to Find the Safe Dose for BI 891065 Alone and in Combination With BI 754091 in Patients With Incurable Tumours or Tumours That Have Spread Phase 1
Completed NCT01938846 - BI 860585 Dose Escalation Single Agent and in Combination With Exemestane or With Paclitaxel in Patients With Various Advanced and/or Metastatic Solid Tumors Phase 1
Recruiting NCT06058312 - Individual Food Preferences for the Mediterranean Diet in Cancer Patients N/A
Completed NCT03308942 - Effects of Single Agent Niraparib and Niraparib Plus Programmed Cell Death-1 (PD-1) Inhibitors in Non-Small Cell Lung Cancer Participants Phase 2
Recruiting NCT06018311 - Exercising Together for Hispanic Prostate Cancer Survivor-Caregiver Dyads N/A
Withdrawn NCT05431439 - Omics of Cancer: OncoGenomics
Completed NCT01343043 - A Pilot Study of Genetically Engineered NY-ESO-1 Specific NY-ESO-1ᶜ²⁵⁹T in HLA-A2+ Patients With Synovial Sarcoma Phase 1
Completed NCT01938638 - Open Label Phase I Dose Escalation Study With BAY1143572 in Patients With Advanced Cancer Phase 1
Recruiting NCT05514444 - Study of MK-4464 as Monotherapy and in Combination With Pembrolizumab in Participants With Advanced/Metastatic Solid Tumors (MK-4464-001) Phase 1
Recruiting NCT02292641 - Beyond TME Origins N/A
Terminated NCT00954512 - Study of Robatumumab (SCH 717454, MK-7454) in Combination With Different Treatment Regimens in Participants With Advanced Solid Tumors (P04722, MK-7454-004) Phase 1/Phase 2
Recruiting NCT04958239 - A Study to Test Different Doses of BI 765179 Alone and in Combination With Ezabenlimab in Patients With Advanced Cancer (Solid Tumors) Phase 1
Recruiting NCT04627376 - Multimodal Program for Cancer Related Cachexia Prevention N/A
Completed NCT01222728 - Using Positron Emission Tomography to Predict Intracranial Tumor Growth in Neurofibromatosis Type II Patients
Recruiting NCT06004440 - Real World Registry for Use of the Ion Endoluminal System
Active, not recruiting NCT05636696 - COMPANION: A Couple Intervention Targeting Cancer-related Fatigue N/A
Not yet recruiting NCT06035549 - Resilience in East Asian Immigrants for Advance Care Planning Discussions N/A
Recruiting NCT06004466 - Noninvasive Internal Jugular Venous Oximetry
Completed NCT03190811 - Anti-PD-1 Alone or Combined With Autologous DC-CIK Cell Therapy in Advanced Solid Tumors Phase 1/Phase 2

External Links