View clinical trials related to Myeloproliferative Neoplasm.
Filter by:This phase III trial studies response-based chemotherapy in treating newly diagnosed acute myeloid leukemia or myelodysplastic syndrome in younger patients with Down syndrome. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Response-based chemotherapy separates patients into different risk groups and treats them according to how they respond to the first course of treatment (Induction I). Response-based treatment may be effective in treating acute myeloid leukemia or myelodysplastic syndrome in younger patients with Down syndrome while reducing the side effects.
This randomized phase II trial studies the safety and how well multi-peptide cytomegalovirus (CMV)-modified vaccinia Ankara (MVA) vaccine works in reducing CMV complications in patients previously infected with CMV and are undergoing a donor hematopoietic cell transplant. CMV is a virus that may reproduce and cause disease and even death in patients with lowered immune systems, such as those undergoing a hematopoietic cell transplant. By placing 3 small pieces of CMV deoxyribonucleic acid (DNA) (the chemical form of genes) into a very safe, weakened virus called MVA, the multi-peptide CMV-MVA vaccine may be able to induce immunity (the ability to recognize and respond to an infection) to CMV. This may help to reduce both CMV complications and reduce the need for antiviral drugs in patients undergoing a donor hematopoietic cell transplant.
This phase 2 trial studies how well cluster of differentiation 8 (CD8)+ memory T-cells work as a consolidative therapy following a donor non-myeloablative hematopoietic cell transplant in treating patients with leukemia or lymphoma. Giving total lymphoid irradiation and anti-thymocyte globulin before a donor hematopoietic cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells (called graft-versus-host disease). Giving cyclosporine and mycophenolate mofetil after the transplant may stop this from happening. Once the donated stem cells begin working, the patient's immune system may see the remaining cancer cells as not belonging in the patient's body and destroy them. Giving an infusion of the donor's white blood cells, such as CD8+ memory T-cells, may boost this effect and may be an effective treatment to kill any cancer cells that may be left in the body (consolidative therapy).
This study gathers health information for the Project: Every Child for younger patients with cancer. Gathering health information over time from younger patients with cancer may help doctors find better methods of treatment and on-going care.
This randomized phase II trial studies how well vaccine therapy works in reducing the frequency of cytomegalovirus severe infections (events) in patients with hematologic malignancies undergoing donor stem cell transplant. Vaccines made from a peptide may help the body build an effective immune response and may reduce cytomegalovirus events after donor stem cell transplant.
The aim of this phase II study is to test a novel concept in the treatment of patients with myeloproliferative neoplasms (MPN), a disease of the bone marrow. With no current cure available, MPN are a group of chronic leukemias (blood cancers) in which patients produce too many blood cells. These increased blood cell numbers cause problems to the patient such as bleedings or thrombosis and some patients may progress to acute leukemia, a life threatening condition. Most MPN patients have a gene mutation called JAK2-V617F. The disease is maintained by mutant MPN stem cells that reside in the bone marrow in specialized locations called "niches". These niches need connections to the nervous system. New findings show that these connections are destroyed by the presence of the mutated MPN stem cells. Research teams found that some drugs (beta3-sympathicomimetics) can restore these damaged niches and at the same time reduce the MPN disease manifestation in a mouse model of MPN. Such sympathicomimetic drugs are already being used to treat patients with asthma or hyperactive bladder. These drugs have shown to have only few side effects. The study tests the effects of the beta-3-sympathicomimetic drug Mirabegron (Betmiga®) on MPN disease in 39 patients that carry a JAK2-V617F mutation. The hypothesis is that Mirabegron will have a beneficial effect on bone marrow niche cells and will thereby improve the disease manifestation in MPN patients. This study should provide a rapid answer whether targeting the nervous system of the niche cells could be useful for patients with MPN and warrants to be tested in larger and more long-term studies.
This clinical trial studies decitabine and cytarabine in treating older patients with newly diagnosed acute myeloid leukemia, myelodysplastic syndrome that is likely to come back or spread to other places in the body, or myeloproliferative neoplasm. Drugs used in chemotherapy, such as decitabine and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving decitabine and cytarabine may work better than standard therapies in treating cancers of the bone marrow and blood cells, such as acute myeloid leukemia, myelodysplastic syndrome, or myeloproliferative neoplasm.
This phase I trial studies the side effects and best dose of pomalidomide after combination chemotherapy in treating patients with newly diagnosed acute myeloid leukemia or high-risk myelodysplastic syndrome. Drugs used in chemotherapy, such as cytarabine, daunorubicin hydrochloride, and etoposide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Pomalidomide may kill cancer cells by stopping blood flow to the cancer and by stimulating white blood cells to kill cancer cells. Giving more than one drug (combination chemotherapy) and pomalidomide may kill more cancer cells.
This randomized clinical trial studies standard GVHD prophylaxis with tacrolimus and methotrexate compared to tacrolimus, mycophenolate mofetil and a reduced-dose methotrexate in patients with hematologic malignancies undergoing allogeneic hematopoietic cell transplant. Both mycophenolate mofetil and reduced-dose methotrexate, in combination with a calcineurin inhibitor, have been shown to be safe and effective in GVHD prevention with less toxicity than standard dose methotrexate. It is not yet known, however, whether this combination of mycophenolate mofetil and reduced-dose methotrexate with tacrolimus is more effective than tacrolimus and standard dose methotrexate in preventing GVHD.
This phase I/Ib trial studies the side effects and best dose of ipilimumab or nivolumab in treating patients with cancers of the blood and blood-forming tissues (hematologic cancers) that have returned after a period of improvement (relapsed) after donor stem cell transplant. Immunotherapy with monoclonal antibodies, such as ipilimumab and nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.