Clinical Trials Logo

Clinical Trial Summary

Myelodysplastic syndromes (MDS) typically occur in elderly people. Current disese classifcation system and prognostic scores (International Prognostic Scoring System, IPSS) present limitations and in most cases fail to capture reliable prognostic information at individual level. Study of MDS has been rapidly transformed by genome characterization and there is increasing evidence that mutation screening may add significant information to currently available prognostic scores. The project will aim to develop artificial intelligence (AI)-based solutions to improve MDS classification and prognostication, through the implementation of a personalized medicine approach. In close collaboration with the European Reference Network on Rare Hematological Diseases (ERN-EuroBloodNet, FPA 739541), GENOMED4ALL involves multiple clinical partners from the network, while leveraging on healthcare information and repositories that will be gathered incorporating interoperability standards as promoted by ERN-EuroBloodNet central registry, the European Rare Blood Disorders Platform (ENROL, GA 947670).


Clinical Trial Description

Myelodysplastic syndromes (MDS) typically occur in elderly people. Patients present peripheral blood cytopenia, and with time a portion of these subjects evolve into acute myeloid leukaemia (AML). The natural history of MDS is heterogeneous ranging from conditions with a near-normal life expectancy to forms close to AML, and therefore a risk-adapted treatment strategy is mandatory. Current prognostic scores (Revised International Prognostic Scoring System, IPSS-R) present limitations, and in most cases fail to capture reliable prognostic information at individual level. Study of MDS has been rapidly transformed by genome characterization. Somatic mutations occur in the genomes of hematopoietic stem cells at a low, but detectable frequency during normal DNA replication. Any genetic alteration that causes a selective advantage relative to other self-renewing cells will lead to clonal dominance (clonal haematopoiesis, CH). The consequence of CH is genomic instability leading to increased risk of acquiring additional mutations and to develop MDS, solid cancer and other illnesses. The time and place of individual mutations and their clonal emergence during the course of the disease are central issues for a better comprehension of MDS pathogenesis and phenotype and for the development of cancer preventive strategies. Important steps forward have been made in defining the molecular architecture of MDS. The MDS associated with 5q deletion derives from the haploinsufficiency of RPS14 gene. Genes encoding for spliceosome components were identified in a high proportion of subjects with MDS. There is a close relationship between ring sideroblasts and SF3B1 mutations, which is consistent with a causal relationship. In addition, an increasing number of genes have been found to carry recurrent mutations in MDS, involved in DNA methylation (DNMT3A, TET2, IDH1/2), chromatin modification (EZH2, ASXL1), transcriptional regulation (RUNX1), signal transduction (KRAS, CBL). Gene mutations have been reported to influence survival and risk of disease progression in MDS, and the evaluation of the mutation status may add significant information to currently used prognostic scores. For instance, we found that SF3B1 mutations were independent predictors of favorable prognosis, while driver mutations of ASXL1, SRSF2, RUNX1, TP53 and EZH2 genes were associated with a reduced probability of survival. MDS with ring sideroblasts provide the best evidence that the identification of the mutant gene responsible for the initial clone is relevant to clinical outcome. In fact, ring sideroblasts may be found not only in patients with a founding mutation in SF3B1, but also in those with an initiating oncogenic lesion in SRSF2. However, the median leukemia-free survival is >10 years in the former vs <2 years in the latter. Moreover, mutation screening may affect clinical decision making : a) in MDS with 5q-, subjects carrying TP53 mutations have a higher risk of leukemic progression and a lower probability of response to lenalidomide; b) in patients receiving HSCT, TP53 mutations predict high probability of relapse; c) SF3B1 mutations are associated with increased probability of erythroid response to TGFb inhibitors (luspatercept), and d) TET2 mutations might be associated with response to HMA. Despite these findings, caution is needed against immediately adopting such mutational testing in clinical practice. First, the presence of mutations in a given individual has only limited predictive power, as conversion to MDS is rare regardless of mutation status. In addition, in patients with overt MDS, genetic abnormalities explain only a proportion of the total hazard for survival associated with specific treatments, meaning that a large percentage is still associated with clinical and non-mutational factors. Comprehensive analyses of large patient population and new methods to study gene-gene interactions and genoptype-phenotype correlations are warranted to correctly estimate the independent effect of each genomic abnormality on clinical outcome and response to treatment. By combining an already available, large amount of sequenced genomic data and clinical information, the authors hypothesize that AI will allow to understand better MDS biology and classification, enhance prognostic/predictive capacity of currently available tools and apply treatments in a more targeted way, thus facilitating the implementation of personalized medicine program across EU. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04889729
Study type Observational
Source Istituto Clinico Humanitas
Contact
Status Active, not recruiting
Phase
Start date March 15, 2021
Completion date December 31, 2024

See also
  Status Clinical Trial Phase
Recruiting NCT05400122 - Natural Killer (NK) Cells in Combination With Interleukin-2 (IL-2) and Transforming Growth Factor Beta (TGFbeta) Receptor I Inhibitor Vactosertib in Cancer Phase 1
Terminated NCT04313881 - Magrolimab + Azacitidine Versus Azacitidine + Placebo in Untreated Participants With Myelodysplastic Syndrome (MDS) Phase 3
Recruiting NCT05088356 - Reduced Intensity Allogeneic HCT in Advanced Hematologic Malignancies w/T-Cell Depleted Graft Phase 1
Recruiting NCT04003220 - Idiopathic Chronic Thrombocytopenia of Undetermined Significance : Pathogenesis and Biomarker
Completed NCT02916979 - Myeloid-Derived Suppressor Cells and Checkpoint Immune Regulators' Expression in Allogeneic SCT Using FluBuATG Phase 1
Active, not recruiting NCT03755414 - Study of Itacitinib for the Prophylaxis of Graft-Versus-Host Disease and Cytokine Release Syndrome After T-cell Replete Haploidentical Peripheral Blood Hematopoietic Cell Transplantation Phase 1
Completed NCT00003270 - Chemotherapy, Radiation Therapy, and Umbilical Cord Blood Transplantation in Treating Patients With Hematologic Cancer Phase 2
Recruiting NCT04904588 - HLA-Mismatched Unrelated Donor Hematopoietic Cell Transplantation With Post-Transplantation Cyclophosphamide Phase 2
Terminated NCT04866056 - Jaktinib and Azacitidine In Treating Patients With MDS With MF or MDS/MPN With MF. Phase 1/Phase 2
Recruiting NCT04701229 - Haploinsufficiency of the RBM22 and SLU7 Genes in Del(5q) Myelodysplastic Syndromes
Suspended NCT04485065 - Safety and Efficacy of IBI188 With Azacitidine in Subjects With Newly Diagnosed Higher Risk MDS Phase 1
Recruiting NCT04174547 - An European Platform for Translational Research in Myelodysplastic Syndromes
Enrolling by invitation NCT04093570 - A Study for Participants Who Participated in Prior Clinical Studies of ASTX727 (Standard Dose), With a Food Effect Substudy at Select Study Centers Phase 2
Completed NCT02508870 - A Study of Atezolizumab Administered Alone or in Combination With Azacitidine in Participants With Myelodysplastic Syndromes Phase 1
Completed NCT04543305 - A Study of PRT1419 in Patients With Relapsed/Refractory Hematologic Malignancies Phase 1
Recruiting NCT05384691 - Efficacy of Luspatercept in ESA-naive LR-MDS Patients With or Without Ring Sideroblasts Who do Not Require Transfusions Phase 2
Recruiting NCT05365035 - A Phase II Study of Cladribine and Low Dose Cytarabine in Combination With Venetoclax, Alternating With Azacitidine and Venetoclax, in Patients With Higher-risk Myeloproliferative Chronic Myelomonocytic Leukemia or Higher-risk Myelodysplastic Syndromes With Excess Blasts Phase 2
Recruiting NCT06008405 - Clinical Trial Evaluating the Safety of the TQB2928 Injection Combination Therapy Phase 1
Not yet recruiting NCT05969821 - Clonal Hematopoiesis of Immunological Significance
Withdrawn NCT05170828 - Cryopreserved MMUD BM With PTCy for Hematologic Malignancies Phase 1