View clinical trials related to Muscular Dystrophies.
Filter by:The Duchenne Registry is an online, patient-report registry for individuals with Duchenne and Becker muscular dystrophy and carrier females. The purpose of the Registry is to connect Duchenne and Becker patients with actively recruiting clinical trials and research studies, and to educate patients and families about Duchenne and Becker care and research. At the same time, The Duchenne Registry is a valuable resource for clinicians and researchers in academia and industry, allowing access to de-identified datasets provided by patients and their families-information that is vital to advances in the care and treatment of Duchenne. The Duchenne Registry is a member of the TREAT-NMD Neuromuscular Network.
Background: - Cerebral palsy (CP) is the most common motor disorder in children. CP often causes crouch gait, an abnormal way of walking. Knee crouch has many causes, so no single device or approach works best for everybody. This study s adjustable brace provides many types of walking assistance. Researchers will evaluate brace options to find the best solution for each participant, and whether one solution works best for the group. Objective: - To evaluate a new brace to improve crouch gait in children with CP. Eligibility: - Children 5 17 years old with CP. - Healthy volunteers 5 17 years old. Design: - All participants will be screened with medical history and physical exam. - Healthy volunteers will have 1 visit. They will do motion analysis, EMG, and EEG described below. - Participants with CP will have 6 visits. - Visit 1: <TAB>1. Motion analysis: Balls will be taped to participants skin. This helps cameras follow their movement. <TAB>2. EMG: Metal discs will be taped to participants skin. They measure electrical muscle activity. <TAB>3. Participants knee movement will be tested. <TAB>4. Participants will walk 50 meters. <TAB>5. Participants legs will be cast to make custom braces. - Visit 2: - Participants will wear their new braces and have them adjusted. - Steps 1 3 will be repeated. - EEG: Small metal discs will be placed on the participants scalp. They record brain waves. - Participants will have electrical stimulation of their knees and practice extending them. - Participants will take several walks with the braces in different settings. - Visits 3 5: participants will repeat the walking and some other steps from visit 2. - Visit 6 will repeat visit 2.
This Study is single arm, single centre trial to check the safety and efficacy of Bone Marrow derived autologous cell(100 million per dose) for the patient with Duchenne Muscular Dystrophy.
This Study is single arm, single center trial to check the safety and efficacy of BMMNC (100 million per dose) for the patient with Duchenne Muscular Dystrophy,
Duchenne muscular dystrophy (DMD) is the most common and devastating form of muscular dystrophy, caused by an X-chromosome gene mutation resulting in the absence of the protein dystrophin. Gene therapy by exon skipping or stop codon read-through and cell therapy are at the stage of clinical assays with very promising results. Nevertheless, they will not allow a complete cure of DMD patients and they will concern only specific types of mutations. It is therefore crucial to develop other therapeutic strategies related to the natural history of the disease and targeted not on the dystrophin itself, but on the consequences of its absence. Another crucial pathophysiological pathway in DMD is muscle cell calcium homeostasis, particularly via the ryanodine recepteur (RyR1). Our study focus on the relationship between endomysial fibrosis, abnormal inflammation response and calcium homeostasis dysfunction which are not entirely established in DMD. The identification of the biological mechanisms that play a role in the severity of the phenotype, particularly endomysial fibrosis, should allow the development of targeted pharmacotherapy as a complementary strategy for the future treatment of DMD.
Duchenne muscular dystrophy (DMD), an X-linked recessive genetic disease always progressed slowly,tends to leading proximal skeletal muscle atrophy and weakness of limbs, as well as impaired respiratory muscle and cardiac muscle. To a large extent, patients always lose motor function gradually and die for heart failure or severe infection at the end stage of DMD. At present, the treatment strategy relies on heteropathy accompanied with rehabilitation training. However, the therapeutic effect remains extremely limited. Human umbilical cord mesenchymal stem cells (hUC-MSCs) have been evidenced to improve motor function, increase muscle strength and reduce abnormal levels of related enzymes, such as creatine kinase (CK), lactate dehydrogenase (LDH), alanine aminotransferase (ALT) and aspartate aminotransferase (AST). This study is aimed to explore the safety and efficacy of hUC-MSCs transplantation for DMD.
Background: - Some nerve and muscle disorders that start early in life (before age 25), like some forms of muscular dystrophy, can run in families. However, the genetic causes of these disorders are not known. Also, doctors do not fully understand how symptoms of these disorders change over time. Researchers want to learn more about genetic nerve and muscle disorders that start in childhood by studying affected people and their family members, as well as healthy volunteers. Objectives: - To better understand nerve and muscle disorders that start early in life and run in families. Eligibility: - Individuals at least 4 weeks old with childhood-onset muscular and nerve disorders, including those who have a later onset of a disorder that typically has childhood onset. - Affected and unaffected family members of the individuals with muscular and nerve disorders. - Healthy volunteers at least 4 weeks old with no nerve or muscle disorders. Design: - Participants will be screened with a physical exam and medical history. Genetic information will be collected from blood, saliva, cheek swab, or skin samples. Urine samples may also be collected. - Healthy volunteers and unaffected family members will have imaging studies of the muscles. These studies will include magnetic resonance imaging (MRI) and ultrasound scans. Results will be compared with those from the affected participants. - All participants with nerve and muscle disorders will have multiple tests, including the following: - Imaging studies of the muscles, including ultrasound and MRI scans. - Imaging studies of the bones, such as x-rays and DEXA scans. - Heart and lung function tests. - Eye exams. - Nerve and muscle electrical activity tests and biopsies. - Video and photo image collection of affected muscles. - Speech, language, and swallowing evaluation. - Lumbar puncture to collect spinal fluid for study. - Tests of movement, attention, thinking, and coordination. - Participants with nerve and muscle disorders will return to the Clinical Center every year. They will repeat the tests and studies at these visits....
The purpose of this research study is to determine the potential of magnetic resonance imaging, spectroscopy, and whole body imaging to monitor disease progression and to serve as an objective outcome measure for clinical trials in Muscular Dystrophy (MD). The investigators will compare the muscles of ambulatory or non-ambulatory boys/men with DMD with muscles of healthy individuals of the same age and monitor disease progression in those with DMD over a 5-10 year period. The amount of muscle damage and fat that the investigators measure will also be related to performance in daily activities, such as walking and the loss of muscle strength. In a small group of subjects the investigators will also assess the effect of corticosteroid drugs on the muscle measurements. Additionally, the investigators will map the progression of Becker MD following adults with this rare disease. The primary objective is to conduct a multi-centered study to validate the potential of non-invasive magnetic resonance imaging and magnetic resonance spectroscopy to monitor disease progression and to serve as a noninvasive surrogate outcome measure for clinical trials in DMD and BMD. The secondary objective is to characterize the progressive involvement of the lower extremity, upper extremity, trunk/respiratory muscles in boys/men with DMD and BMD guiding clinical trials.
The Congenital Muscle Disease Patient and Proxy Reported Outcome Study (CMDPROS) is a longitudinal 10 year study to identify and trend care parameters, adverse events in the congenital muscle diseases using the Congenital Muscle Disease International Registry (CMDIR) to acquire necessary data for adverse event calculations (intake survey and medical records curation). To support this study and become a participant, we ask that you register in the CMDIR. You can do this by visiting www.cmdir.org. There is no travel required. The registry includes affected individuals with congenital muscular dystrophy, congenital myopathy, and congenital myasthenic syndrome and registers through the late onset spectrum for these disease groups. The CMDIR was created to identify the global congenital muscle disease population for the purpose of raising awareness, standards of care, clinical trials and in the future a treatment or cure. Simply put, we will not be successful in finding a treatment or cure unless we know who the affected individuals are, what the diagnosis is and how the disease is affecting the individual. Registering in the CMDIR means that you will enter demographic information and complete an intake survey. We would then ask that you provide records regarding the diagnosis and treatment of CMD, including genetic testing, muscle biopsy, pulmonary function testing, sleep studies, clinic visit notes, and hospital discharge summaries. Study hypothesis: 1. To use patient and proxy reported survey answers and medical reports to build a longitudinal care and outcomes database across the congenital muscle diseases. 2. To generate congenital muscle disease subtype specific adverse event rates and correlate with key care parameters.
PreU7-53 is a natural history study. The objective is to monitor the clinical and radiological course of upper limb muscle impairment in patients with Duchenne Muscular Dystrophy (DMD), potentially treatable with AAV-mediated exon 53 skipping.